Jarrett Camp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8758126/publications.pdf Version: 2024-02-01

INDDETT CAMD

#	Article	IF	CITATIONS
1	Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15672-15677.	7.1	870
2	Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell, 2015, 163, 367-380.	28.9	846
3	Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 2019, 574, 418-422.	27.8	496
4	Multilineage communication regulates human liver bud development from pluripotency. Nature, 2017, 546, 533-538.	27.8	458
5	Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature, 2016, 534, 391-395.	27.8	413
6	Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. Cell Reports, 2016, 16, 1126-1137.	6.4	344
7	Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science, 2018, 362, .	12.6	291
8	Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. ELife, 2016, 5, .	6.0	200
9	Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia. Nature Medicine, 2019, 25, 561-568.	30.7	135
10	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	27.8	114
11	InÂVitro and InÂVivo Development of the Human Airway at Single-Cell Resolution. Developmental Cell, 2020, 53, 117-128.e6.	7.0	110
12	The Organoid Cell Atlas. Nature Biotechnology, 2021, 39, 13-17.	17.5	96
13	Mapping Development of the Human Intestinal Niche at Single-Cell Resolution. Cell Stem Cell, 2021, 28, 568-580.e4.	11.1	94
14	Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nature Neuroscience, 2018, 21, 932-940.	14.8	93
15	Lineage recording in human cerebral organoids. Nature Methods, 2022, 19, 90-99.	19.0	93
16	Charting human development using a multi-endodermal organ atlas and organoid models. Cell, 2021, 184, 3281-3298.e22.	28.9	82
17	Mapping human cell phenotypes to genotypes with single-cell genomics. Science, 2019, 365, 1401-1405.	12.6	71
18	Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases. Cell Stem Cell, 2021, 28, 1148-1159.e8.	11.1	63

JARRETT CAMP

#	Article	IF	CITATIONS
19	A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex. Development (Cambridge), 2018, 145, .	2.5	62
20	High-throughput single-cell transcriptomics on organoids. Current Opinion in Biotechnology, 2019, 55, 167-171.	6.6	62
21	Single-cell genomics to guide human stem cell and tissue engineering. Nature Methods, 2018, 15, 661-667.	19.0	52
22	NGN2 induces diverse neuron types from human pluripotency. Stem Cell Reports, 2021, 16, 2118-2127.	4.8	51
23	Optimal Hypoxia Regulates Human iPSC-Derived Liver Bud Differentiation through Intercellular TGFB Signaling. Stem Cell Reports, 2018, 11, 306-316.	4.8	37
24	CSS: cluster similarity spectrum integration of single-cell genomics data. Genome Biology, 2020, 21, 224.	8.8	30
25	Human organomics: a fresh approach to understanding human development using single-cell transcriptomics. Development (Cambridge), 2017, 144, 1584-1587.	2.5	26
26	Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013.	8.1	24
27	Human Stem Cell Resources Are an Inroad to Neandertal DNA Functions. Stem Cell Reports, 2020, 15, 214-225.	4.8	18
28	Advances in mini-brain technology. Nature, 2017, 545, 39-40.	27.8	15
29	Single-cell genomic analysis of human cerebral organoids. Methods in Cell Biology, 2020, 159, 229-256.	1.1	14
30	Characterization of RNA content in individual phase-separated coacervate microdroplets. Nature Communications, 2022, 13, 2626.	12.8	14
31	ShinyCortex: Exploring Single-Cell Transcriptome Data From the Developing Human Cortex. Frontiers in Neuroscience, 2018, 12, 315.	2.8	8
32	Spatial transcriptomic and single-nucleus analysis reveals heterogeneity in a gigantic single-celled syncytium. ELife, 2022, 11, .	6.0	8
33	Single-cell, single-organoid phenotypic landscapes. Nature Methods, 2022, 19, 280-281.	19.0	0