Seo-Hee Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8757901/publications.pdf

Version: 2024-02-01

933447 940533 17 618 10 16 citations h-index g-index papers 17 17 17 1133 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Wnt2b/ \hat{l}^2 -catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development (Cambridge), 2006, 133, 3167-3177.	2.5	136
2	The Apical Complex Couples Cell Fate and Cell Survival to Cerebral Cortical Development. Neuron, 2010, 66, 69-84.	8.1	97
3	Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nature Communications, 2016, 7, 10329.	12.8	77
4	YAP/TAZ initiate and maintain Schwann cell myelination. ELife, 2017, 6, .	6.0	66
5	Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Developmental Biology, 2016, 419, 336-347.	2.0	53
6	Impaired Reelin-Dab1 Signaling Contributes to Neuronal Migration Deficits of Tuberous Sclerosis Complex. Cell Reports, 2015, 12, 965-978.	6.4	49
7	Genetic ablation of Pals1 in retinal progenitor cells models the retinal pathology of Leber congenital amaurosis. Human Molecular Genetics, 2012, 21, 2663-2676.	2.9	37
8	Dual function of Yap in the regulation of lens progenitor cells and cellular polarity. Developmental Biology, 2014, 386, 281-290.	2.0	34
9	Hippoâ€yap signaling in ocular development and disease. Developmental Dynamics, 2018, 247, 794-806.	1.8	32
10	Apical complex protein Pals1 is required to maintain cerebellar progenitor cells in a proliferative state. Development (Cambridge), 2015, 143, 133-46.	2.5	11
11	Targeted deletion of Crb1/Crb2 in the optic vesicle models key features of leber congenital amaurosis 8. Developmental Biology, 2019, 453, 141-154.	2.0	8
12	Yap/Taz are required for establishing the cerebellar radial glia scaffold and proper foliation. Developmental Biology, 2020, 457, 150-162.	2.0	7
13	<i>De novo</i> variants in <i>MPP5</i> cause global developmental delay and behavioral changes. Human Molecular Genetics, 2020, 29, 3388-3401.	2.9	5
14	Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye. Gene Expression Patterns, 2015, 17, 31-37.	0.8	4
15	Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model. BMC Ophthalmology, 2016, 16, 193.	1.4	1
16	Abnormal activation of Yap/Taz contributes to the pathogenesis of tuberous sclerosis complex. Human Molecular Genetics, 2022, , .	2.9	1
17	Current perspectives in Leber congenital amaurosis type 8 mouse modeling. Developmental Dynamics, 2022, , .	1.8	O