
Andreas Stengel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8757783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVIDâ€19–related personal product shortages are associated with psychological distress in people living with gastrointestinal disorders: A crossâ€sectional survey. Neurogastroenterology and Motility, 2022, 34, e14198.	1.6	9
2	Emotional stress responsivity of patients with IBS - a systematic review. Journal of Psychosomatic Research, 2022, 153, 110694.	1.2	7
3	Interactions between nesfatin-1 and the autonomic nervous system—An overview. Peptides, 2022, 149, 170719.	1.2	12
4	Inflammatory Stress Induced by Intraperitoneal Injection of LPS Increases Phoenixin Expression and Activity in Distinct Rat Brain Nuclei. Brain Sciences, 2022, 12, 135.	1.1	7
5	Telemonitoring in patients with chronic heart failure and moderate depressed symptoms: results of the <scp>Telemedical Interventional Monitoring in Heart Failure</scp> (<scp>TIMâ€HF</scp>) study. European Journal of Heart Failure, 2021, 23, 186-194.	2.9	37
6	Central mechanisms of kisspeptin-induced inhibition of food intake. Peptides, 2021, 135, 170475.	1.2	2
7	Neurotensin and Xenin Show Positive Correlations With Perceived Stress, Anxiety, Depressiveness and Eating Disorder Symptoms in Female Obese Patients. Frontiers in Behavioral Neuroscience, 2021, 15, 629729.	1.0	6
8	Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. , 2021, 11, 1679-1730.		13
9	Irritable bowel syndrome and functional dyspepsia in patients with eating disorders ―a systematic review. European Eating Disorders Review, 2021, 29, 692-719.	2.3	10
10	Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. International Journal of Molecular Sciences, 2021, 22, 9156.	1.8	7
11	The impact of the coronavirus (COVID-19) pandemic on individuals with gastrointestinal disorders: A protocol of an international collaborative study. Journal of Psychosomatic Research, 2021, 148, 110561.	1.2	7
12	An Activity Tracker–Guided Physical Activity Program for Patients Undergoing Radiotherapy: Protocol for a Prospective Phase III Trial (OnkoFit I and II Trials). JMIR Research Protocols, 2021, 10, e28524.	0.5	1
13	The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. International Journal of Molecular Sciences, 2021, 22, 11059.	1.8	12
14	Restraint stress affects circulating NUCB2/nesfatin-1 and phoenixin levels in male rats. Psychoneuroendocrinology, 2020, 122, 104906.	1.3	15
15	Effects of microbiome changes on endocrine ghrelin signaling – A systematic review. Peptides, 2020, 133, 170388.	1.2	23
16	Cholecystokinin and bombesin activate neuronatin neurons in the nucleus of the solitary tract. Brain Research, 2020, 1746, 147006.	1.1	5
17	Pancreatic Polypeptide but Not Other Members of the Neuropeptide Y Family Shows a Moderate Association With Perceived Anxiety in Obese Men. Frontiers in Human Neuroscience, 2020, 14, 578578.	1.0	2
18	Central blockage of nesfatin-1 has anxiolytic effects but does not prevent corticotropin-releasing factor-induced anxiety in male rats. Biochemical and Biophysical Research Communications, 2020, 529, 773-777.	1.0	7

#	Article	IF	CITATIONS
19	Using subdomain-specific item sets affected PROMIS physical function scores differently in cardiology and rheumatology patients. Journal of Clinical Epidemiology, 2020, 127, 151-160.	2.4	5
20	Restraint stress increases the expression of phoenixin immunoreactivity in rat brain nuclei. Brain Research, 2020, 1743, 146904.	1.1	14
21	Sucrose Preference and Novelty-Induced Hypophagia Tests in Rats using an Automated Food Intake Monitoring System. Journal of Visualized Experiments, 2020, , .	0.2	4
22	Assessment of Physical Activity Patterns in Adolescent Patients with Anorexia Nervosa and Their Effect on Weight Gain. Journal of Clinical Medicine, 2020, 9, 727.	1.0	5
23	Psychological and nutritional correlates of objectively assessed physical activity in patients with anorexia nervosa. European Eating Disorders Review, 2020, 28, 559-570.	2.3	6
24	NUCB2/nesfatin-1 – Inhibitory effects on food intake, body weight and metabolism. Peptides, 2020, 128, 170308.	1.2	27
25	Animal Models for Anorexia Nervosa—A Systematic Review. Frontiers in Human Neuroscience, 2020, 14, 596381.	1.0	33
26	Undergraduate Medical Students' Search for Health Information Online: Explanatory Cross-Sectional Study. JMIR Medical Informatics, 2020, 8, e16279.	1.3	11
27	Binge-Eating, Bulimia, and Other Eating Disorders. , 2019, , 473-481.		Ο
28	Central somatostatin signaling and regulation of food intake. Annals of the New York Academy of Sciences, 2019, 1455, 98-104.	1.8	14
29	LEAP2: A novel regulator of food intake and body weight?. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 711-712.	8.2	9
30	Pharmacological Modulation of Ghrelin to Induce Weight Loss: Successes and Challenges. Current Diabetes Reports, 2019, 19, 102.	1.7	26
31	Activity Based Anorexia as an Animal Model for Anorexia Nervosa–A Systematic Review. Frontiers in Nutrition, 2019, 6, 69.	1.6	59
32	Gastrointestinal alterations in anorexia nervosa — A systematic review. European Eating Disorders Review, 2019, 27, 447-461.	2.3	37
33	The role of phoenixin in behavior and food intake. Peptides, 2019, 114, 38-43.	1.2	15
34	An update on gastrointestinal disturbances in eating disorders. Molecular and Cellular Endocrinology, 2019, 497, 110318.	1.6	42
35	Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology, 2019, 100, 58-66.	1.3	39
36	Activity-based anorexia activates CRF immunoreactive neurons in female rats. Neuroscience Letters, 2018, 674, 142-147.	1.0	14

3

#	Article	IF	CITATIONS
37	Nesfatin-130-59 Injected Intracerebroventricularly Increases Anxiety, Depression-Like Behavior, and Anhedonia in Normal Weight Rats. Nutrients, 2018, 10, 1889.	1.7	12
38	The Role of Objectively Measured, Altered Physical Activity Patterns for Body Mass Index Change during Inpatient Treatment in Female Patients with Anorexia Nervosa. Journal of Clinical Medicine, 2018, 7, 289.	1.0	11
39	Current Understanding of the Role of Nesfatin-1. Journal of the Endocrine Society, 2018, 2, 1188-1206.	0.1	72
40	Impaired Gastric Myoelectrical Reactivity in Children and Adolescents with Obesity Compared to Normal-Weight Controls. Nutrients, 2018, 10, 699.	1.7	11
41	Deep Brain Stimulation—Possible Treatment Strategy for Pathologically Altered Body Weight?. Brain Sciences, 2018, 8, 19.	1.1	9
42	Metabolic Barriers to Weight Gain in Patients With Anorexia Nervosa: A Young Adult Case Report. Frontiers in Psychiatry, 2018, 9, 199.	1.3	4
43	The Role of Ghrelin in Anorexia Nervosa. International Journal of Molecular Sciences, 2018, 19, 2117.	1.8	45
44	Phoenixin—A Pleiotropic Gut-Brain Peptide. International Journal of Molecular Sciences, 2018, 19, 1726.	1.8	26
45	Alterations of circulating NUCB2/nesfatin-1 during short term therapeutic improvement of anxiety in obese inpatients. Psychoneuroendocrinology, 2017, 79, 107-115.	1.3	20
46	Short-term UVB irradiation significantly increases vitamin D serum concentration in obese patients: a clinical pilot study. Endocrine, 2017, 56, 186-195.	1.1	1
47	Phoenixin is negatively associated with anxiety in obese men. Peptides, 2017, 88, 32-36.	1.2	34
48	Activity-based anorexia activates nesfatin-1 immunoreactive neurons in distinct brain nuclei of female rats. Brain Research, 2017, 1677, 33-46.	1.1	20
49	Gastrointestinal Peptides During Chronic Gastric Electrical Stimulation in Patients With Intractable Vomiting. Neuromodulation, 2017, 20, 774-782.	0.4	9
50	Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides, 2017, 96, 53-60.	1.2	53
51	Central and peripheral expression sites of phoenixin-14 immunoreactivity in rats. Biochemical and Biophysical Research Communications, 2017, 493, 195-201.	1.0	48
52	Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones. Biology of Sex Differences, 2017, 8, 2.	1.8	16
53	Plasma kisspeptin and ghrelin levels are independently correlated with physical activity in patients with anorexia nervosa. Appetite, 2017, 108, 141-150.	1.8	38
54	Leptin and Physical Activity in Adult Patients with Anorexia Nervosa: Failure to Demonstrate a Simple Linear Association. Nutrients, 2017, 9, 1210.	1.7	14

#	Article	IF	CITATIONS
55	Control of Food Intake by Gastrointestinal Peptides: Mechanisms of Action and Possible Modulation in the Treatment of Obesity. Journal of Neurogastroenterology and Motility, 2017, 23, 180-196.	0.8	58
56	Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Frontiers in Neuroscience, 2017, 11, 231.	1.4	28
57	Activity-Based Anorexia Reduces Body Weight without Inducing a Separate Food Intake Microstructure or Activity Phenotype in Female Rats—Mediation via an Activation of Distinct Brain Nuclei. Frontiers in Neuroscience, 2016, 10, 475.	1.4	30
58	Nesfatin-1: current status as a peripheral hormone and future prospects. Current Opinion in Pharmacology, 2016, 31, 19-24.	1.7	20
59	Expression and regulation of peripheral NUCB2/nesfatin-1. Current Opinion in Pharmacology, 2016, 31, 25-30.	1.7	19
60	Peripheral injection of bombesin induces c-Fos in NUCB2/nesfatin-1 neurons. Brain Research, 2016, 1648, 46-53.	1.1	6
61	A RAPID Method for Blood Processing to Increase the Yield of Plasma Peptide Levels in Human Blood. Journal of Visualized Experiments, 2016, , .	0.2	1
62	Peripheral and central localization of the nesfatin-1 receptor using autoradiography in rats. Biochemical and Biophysical Research Communications, 2016, 470, 521-527.	1.0	80
63	Evaluation of a Portable Armband Device to Assess Resting Energy Expenditure in Patients With Anorexia Nervosa. Nutrition in Clinical Practice, 2016, 31, 362-367.	1.1	6
64	Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Frontiers in Neuroscience, 2015, 9, 199.	1.4	79
65	Nesfatin-130â^'59 Injected Intracerebroventricularly Differentially Affects Food Intake Microstructure in Rats Under Normal Weight and Diet-Induced Obese Conditions. Frontiers in Neuroscience, 2015, 9, 422.	1.4	20
66	Determinants of Weight Loss following Laparoscopic Sleeve Gastrectomy: The Role of Psychological Burden, Coping Style, and Motivation to Undergo Surgery. Journal of Obesity, 2015, 2015, 1-10.	1.1	34
67	The role of brain somatostatin receptor 2 in the regulation of feeding and drinking behavior. Hormones and Behavior, 2015, 73, 15-22.	1.0	29
68	Nesfatin-1 $\hat{a} \in \hat{a}$ More than a food intake regulatory peptide. Peptides, 2015, 72, 175-183.	1.2	46
69	Sex-specific regulation of NUCB2/nesfatin-1: Differential implication in anxiety in obese men and women. Psychoneuroendocrinology, 2015, 60, 130-137.	1.3	50
70	The dopamine antagonist flupentixol does not alter ghrelin-induced food intake in rats. Neuropeptides, 2015, 53, 19-27.	0.9	4
71	Surgically and Conservatively Treated Obese Patients Differ in Psychological Factors, Regardless of Body Mass Index or Obesity-Related Co-Morbidities: A Comparison between Groups and an Analysis of Predictors. PLoS ONE, 2015, 10, e0117460.	1.1	9
72	NUCB2/nesfatin-1 Is Associated with Elevated Levels of Anxiety in Anorexia Nervosa. PLoS ONE, 2015, 10, e0132058.	1.1	45

#	Article	IF	CITATIONS
73	CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Frontiers in Neuroscience, 2014, 8, 52.	1.4	85
74	Unclear Abdominal Discomfort: Pivotal Role of Carbohydrate Malabsorption. Journal of Neurogastroenterology and Motility, 2014, 20, 228-235.	0.8	38
75	Irisin Levels are Not Affected by Physical Activity in Patients with Anorexia Nervosa. Frontiers in Endocrinology, 2014, 4, 202.	1.5	40
76	Brain somatostatin receptor 2 mediates the dipsogenic effect of central somatostatin and cortistatin in rats: role in drinking behavior. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R793-R801.	0.9	13
77	lrisin as a muscle-derived hormone stimulating thermogenesis – A critical update. Peptides, 2014, 54, 89-100.	1.2	126
78	Obese patients have higher circulating protein levels of dipeptidyl peptidase IV. Peptides, 2014, 61, 75-82.	1.2	48
79	Peripheral injected cholecystokinin-8S modulates the concentration of serotonin in nerve fibers of the rat brainstem. Peptides, 2014, 59, 25-33.	1.2	5
80	Brain peptides and the modulation of postoperative gastric ileus. Current Opinion in Pharmacology, 2014, 19, 31-37.	1.7	9
81	Chrelin and NUCB2/nesfatin-1 are expressed in the same gastric cell and differentially correlated with body mass index in obese subjects. Histochemistry and Cell Biology, 2013, 139, 909-918.	0.8	68
82	NUCB2/nesfatin-1 is associated with elevated scores of anxiety in female obese patients. Psychoneuroendocrinology, 2013, 38, 2502-2510.	1.3	57
83	Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity – Correlation with body mass index. Peptides, 2013, 39, 125-130.	1.2	341
84	Nesfatin-1: An Affair of the Heart. Endocrinology, 2013, 154, 4443-4445.	1.4	2
85	Ghrelin – A Pleiotropic Hormone Secreted from Endocrine X/A-Like Cells of the Stomach. Frontiers in Neuroscience, 2012, 6, 24.	1.4	63
86	Nesfatin-130–59 but not the N- and C-terminal fragments, nesfatin-11–29 and nesfatin-160–82 injected intracerebroventricularly decreases dark phase food intake by increasing inter-meal intervals in mice. Peptides, 2012, 35, 143-148.	1.2	48
87	Gastric Peptides and their Regulation of Hunger and Satiety. Current Gastroenterology Reports, 2012, 14, 480-488.	1.1	14
88	Yin and Yang - the Gastric X/A-like Cell as Possible Dual Regulator of Food Intake. Journal of Neurogastroenterology and Motility, 2012, 18, 138-149.	0.8	51
89	Activation of somatostatin 2 receptors in the brain and the periphery induces opposite changes in circulating ghrelin levels: functional implications. Frontiers in Endocrinology, 2012, 3, 178.	1.5	5
90	Minireview: Nesfatin-1—An Emerging New Player in the Brain-Gut, Endocrine, and Metabolic Axis. Endocrinology, 2011, 152, 4033-4038.	1.4	71

#	Article	IF	CITATIONS
91	Sulfated cholecystokinin-8 activates phospho-mTOR immunoreactive neurons of the paraventricular nucleus in rats. Peptides, 2011, 32, 65-70.	1.2	12
92	Central nesfatin-1 reduces the nocturnal food intake in mice by reducing meal size and increasing inter-meal intervals. Peptides, 2011, 32, 36-43.	1.2	99
93	Lipopolysaccharide increases gastric and circulating NUCB2/nesfatin-1 concentrations in rats. Peptides, 2011, 32, 1942-1947.	1.2	32
94	Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Research, 2011, 1396, 20-34.	1.1	116
95	Central Injection of the Stable Somatostatin Analog ODT8-SST Induces a Somatostatin2 Receptor-Mediated Orexigenic Effect: Role of Neuropeptide Y and Opioid Signaling Pathways in Rats. Endocrinology, 2010, 151, 4224-4235.	1.4	48
96	Novel insight in distribution of nesfatin-1 and phospho-mTOR in the arcuate nucleus of the hypothalamus of rats. Peptides, 2010, 31, 257-262.	1.2	60
97	Neuroendocrine Control of the Gut During Stress: Corticotropin-Releasing Factor Signaling Pathways in the Spotlight. Annual Review of Physiology, 2009, 71, 219-239.	5.6	128
98	Central Nesfatin-1 Reduces Dark-Phase Food Intake and Gastric Emptying in Rats: Differential Role of Corticotropin-Releasing Factor2 Receptor. Endocrinology, 2009, 150, 4911-4919.	1.4	232
99	Corticotropin-Releasing Factor-Overexpressing Mice Exhibit Reduced Neuronal Activation in the Arcuate Nucleus and Food Intake in Response to Fasting. Endocrinology, 2009, 150, 153-160.	1.4	31
100	Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neuroscience Letters, 2009, 452, 241-246.	1.0	155
101	Identification and Characterization of Nesfatin-1 Immunoreactivity in Endocrine Cell Types of the Rat Gastric Oxyntic Mucosa. Endocrinology, 2009, 150, 232-238.	1.4	288