
Arun Kumar Jugran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8757696/publications.pdf Version: 2024-02-01

ADIIN KIIMAD LUCDAN

#	Article	IF	CITATIONS
1	Therapeutic Potential of \hat{I}_{\pm} - and \hat{I}^2 -Pinene: A Miracle Gift of Nature. Biomolecules, 2019, 9, 738.	4.0	302
2	Cucurbits Plants: A Key Emphasis to Its Pharmacological Potential. Molecules, 2019, 24, 1854.	3.8	106
3	Characterization of essential oil composition, phenolic content, and antioxidant properties in wild and planted individuals of Valeriana jatamansi Jones. Scientia Horticulturae, 2012, 136, 61-68.	3.6	85
4	Nepeta species: From farm to food applications and phytotherapy. Trends in Food Science and Technology, 2018, 80, 104-122.	15.1	83
5	Association of ISSR markers with some biochemical traits of Valeriana jatamansi Jones. Industrial Crops and Products, 2013, 44, 671-676.	5.2	67
6	Assessment of Antioxidant Properties in Fruits of <i>Myrica esculenta</i> : A Popular Wild Edible Species in Indian Himalayan Region. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-8.	1.2	65
7	Impact of Altitudes and Habitats on Valerenic Acid, Total Phenolics, Flavonoids, Tannins, and Antioxidant Activity of Valeriana jatamansi. Applied Biochemistry and Biotechnology, 2016, 179, 911-926.	2.9	62
8	Cucurbita Plants: From Farm to Industry. Applied Sciences (Switzerland), 2019, 9, 3387.	2.5	60
9	Diabetes and plantâ€derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytotherapy Research, 2021, 35, 223-245.	5.8	60
10	<i>Valeriana jatamansi:</i> An herbaceous plant with multiple medicinal uses. Phytotherapy Research, 2019, 33, 482-503.	5.8	58
11	Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends in Food Science and Technology, 2019, 91, 362-379.	15.1	56
12	Assessing genetic diversity and population structure of sugarcane cultivars, progenitor species and genera using microsatellite (SSR) markers. Gene, 2020, 753, 144800.	2.2	50
13	In vitro propagation, genetic and phytochemical assessment of Habenaria edgeworthii: an important Astavarga plant. Acta Physiologiae Plantarum, 2012, 34, 869-875.	2.1	47
14	Patterns of morphological and genetic diversity of Valeriana jatamansi Jones in different habitats and altitudinal range of West Himalaya, India. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 13-21.	1.2	47
15	Berberis Plants—Drifting from Farm to Food Applications, Phytotherapy, and Phytopharmacology. Foods, 2019, 8, 522.	4.3	46
16	Anacardium Plants: Chemical,Nutritional Composition and Biotechnological Applications. Biomolecules, 2019, 9, 465.	4.0	42
17	Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective. Frontiers in Endocrinology, 2020, 11, 295.	3.5	41
18	<i>Hedychium spicatum</i> : a systematic review on traditional uses, phytochemistry, pharmacology and future prospectus. Journal of Pharmacy and Pharmacology, 2018, 70, 687-712.	2.4	32

Arun Kumar Jugran

#	Article	IF	CITATIONS
19	Assessment of Nutritional and Antioxidant Potential of Selected Vitality Strengthening Himalayan Medicinal Plants. International Journal of Food Properties, 2014, 17, 703-712.	3.0	31
20	Prosopis Plant Chemical Composition and Pharmacological Attributes: Targeting Clinical Studies from Preclinical Evidence. Biomolecules, 2019, 9, 777.	4.0	30
21	Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region. 3 Biotech, 2016, 6, 154.	2.2	28
22	Genetic Diversity and Differentiation in Hedychium spicatum, a Valuable Medicinal Plant of Indian Himalaya. Biochemical Genetics, 2011, 49, 806-818.	1.7	23
23	Identification of ISSR markers associated with valerenic acid content and antioxidant activity in Valeriana jatamansi Jones in the West Himalaya. Molecular Breeding, 2015, 35, 1.	2.1	20
24	Population Genetic Structure and Marker Trait Associations Using Morphological, Phytochemical and Molecular Parameters in Habenaria edgeworthii—a Threatened Medicinal Orchid of West Himalaya, India. Applied Biochemistry and Biotechnology, 2017, 181, 267-282.	2.9	20
25	Characterization of Agro-diversity by Seed Storage Protein Electrophoresis: Focus on Rice Germplasm from Uttarakhand Himalaya, India. Rice Science, 2010, 17, 122-128.	3.9	17
26	Micropropagation and genetic fidelity analysis in Valeriana jatamansi Jones. Journal of Applied Research on Medicinal and Aromatic Plants, 2015, 2, 15-20.	1.5	17
27	Essential oil composition, phenolics and antioxidant activities of <i>Valeriana jatamansi</i> at different phenological stages. Plant Biosystems, 2021, 155, 891-898.	1.6	17
28	Essential oil composition and antioxidant activity in Valeriana jatamansi Jones: influence of seasons and growing sources. Journal of Essential Oil Research, 2017, 29, 101-107.	2.7	15
29	In vitro approaches for conservation and reducing juvenility of Zanthoxylum armatum DC: an endangered medicinal plant of Himalayan region. Trees - Structure and Function, 2017, 31, 1101-1108.	1.9	15
30	The effect of inoculation with mycorrhiza: AM on growth, phenolics, tannins, phenolic composition and antioxidant activity in Valeriana jatamansi Jones. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	3.4	14
31	Antioxidant potential of family Cucurbitaceae with special emphasis on <i>Cucurbita</i> genus: A key to alleviate oxidative stressâ€mediated disorders. Phytotherapy Research, 2021, 35, 3533-3557.	5.8	14
32	Effect of Processing and Storage Methods on the Nutritional, Anti-nutritional, and Anti-oxidant Properties of Paeonia emodi, Wall. ex. Royle. Applied Biochemistry and Biotechnology, 2016, 180, 322-337.	2.9	13
33	Influence of the growth phenophases on the phenolic composition and anti-oxidant properties of Roscoea procera Wall. in western Himalaya. Journal of Food Science and Technology, 2018, 55, 578-585.	2.8	12
34	Genetic diversity analysis in natural populations of Roscoea procera Wall. from West Himalaya, India. Revista Brasileira De Botanica, 2016, 39, 621-630.	1.3	10
35	Methyl jasmonate induced polyphenols and antioxidant production in callus suspension culture of <i>Nardostachys jatamansi</i> . Plant Biosystems, 2020, 154, 851-859.	1.6	10
36	Genetic Diversity Assessment of <l>Valeriana Jatamansi</l> Jones Using Microsatellites Markers. Current Science, 2015, 109, 1273.	0.8	10

#	Article	IF	CITATIONS
37	Morphological, phytochemical and genetic diversity of threatened Polygonatum verticillatum (L.) All. populations of different altitudes and habitat types in Himalayan region. Physiology and Molecular Biology of Plants, 2021, 27, 1795-1809.	3.1	9
38	Rejuvenating ecosystem services through reclaiming degraded land for sustainable societal development: Implications for conservation and human wellbeing. Land Use Policy, 2022, 112, 105804.	5.6	9
39	Hydrogen Peroxide Induced Deoxyribonucleic Acid Damage Preventive Activity of Selected Valeriana Species from West Himalaya. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2017, 87, 59-65.	1.0	6
40	Effects of genetic diversity and population structure on phenolic compounds accumulation in Hedychium spicatum. Ecological Genetics and Genomics, 2017, 3-5, 25-33.	0.5	6
41	Seasonal Variation in Phenolics and Antioxidant Activity of Acorus calamus Linn.: An Important Medicinal Plant of Himalaya. The National Academy of Sciences, India, 2021, 44, 13-15.	1.3	6
42	Integrated approaches for identification of promising populations ofÂValeriana jatamansi in West Himalaya. Journal of Asia-Pacific Biodiversity, 2016, 9, 152-159.	0.4	4
43	Total Phenolics, Tannins and Antioxidant Activity in Twenty Different Apple Cultivars Growing in West Himalaya, India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 71-78.	1.0	4
44	Genetic Diversity of Scanty Available Himalayan Saussurea obvallata (DC.) Edgew Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 587-594.	1.5	4
45	The Relationship of Visiting Insect Diversity and Density of Valeriana jatamansi with Increasing Altitude in Western Himalaya. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 371-378.	1.0	3
46	Policy implications of utilizing indigenous tree species as agroforestry systems in Himalayan states of India: Case study of Uttarakhand. Energy Policy, 2017, 110, 202-209.	8.8	2
47	Ecological variables influencing the diversity and distribution of macrolichens colonizing Quercus leucotrichophora in Uttarakhand forest. Journal of Mountain Science, 2018, 15, 307-318.	2.0	2
48	Genetic Diversity Assessment of <i>Valeriana Jatamansi</i> Jones Using Microsatellites Markers. Current Science, 2015, 109, 1273.	0.8	1
49	Genetic variations and population level admixture assessment for conservation planning of endangered Zanthoxylum armatum DC. in Western Himalaya. Genetic Resources and Crop Evolution, 2022, 69, 1737-1752.	1.6	1
50	Cultivation and Utilization of Valeriana jatamansi Jones for Conservation Planning and Management. Sustainable Development and Biodiversity, 2021, , 113-178.	1.7	0
51	Morphological and Elemental Parameters of Himalayan Peony (<i>Paeonia emodi</i>) a Medicinal Plant in Relation to Different Forests of Garhwal Himalaya, India. Indian Forester, 2022, 148, 45.	0.1	0
52	Assessment of genetic diversity, population structure and phytochemical variations in Polygonatum cirrhifolium (Wall.) Royle: an endangered medicinal herb. Genetic Resources and Crop Evolution, 2022, 69, 2383-2397.	1.6	0