Dhanasekaran Vijaykrishna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8757383/publications.pdf

Version: 2024-02-01

98 papers

9,829 citations

43973 48 h-index 95 g-index

110 all docs

110 docs citations

times ranked

110

10211 citing authors

#	Article	IF	CITATIONS
1	Monitoring International Travelers Arriving in Hong Kong for Genomic Surveillance of SARS-CoV-2. Emerging Infectious Diseases, 2022, 28, 247-250.	2.0	8
2	Genomic epidemiology of SARS-CoV-2 under an elimination strategy in Hong Kong. Nature Communications, 2022, 13, 736.	5.8	26
3	Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nature Communications, 2022, 13, 1721.	5 . 8	116
4	Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nature Communications, 2022, 13, .	5. 8	135
5	Genomic epidemiology of seasonal influenza circulation in China during prolonged border closure from 2020 to 2021. Virus Evolution, 2022, 8, .	2.2	1
6	Detection of Tioman Virus in Pteropus vampyrus Near Flores, Indonesia. Viruses, 2021, 13, 563.	1.5	3
7	Reassortment and Persistence of Influenza A Viruses from Diverse Geographic Origins within Australian Wild Birds: Evidence from a Small, Isolated Population of Ruddy Turnstones. Journal of Virology, 2021, 95, .	1.5	6
8	Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases. Nature Communications, 2021, 12, 4313.	5. 8	17
9	Genetic and Antigenic Characterization of an Influenza A(H3N2) Outbreak in Cambodia and the Greater Mekong Subregion during the COVID-19 Pandemic, 2020. Journal of Virology, 2021, 95, e0126721.	1.5	15
10	Air travel-related outbreak of multiple SARS-CoV-2 variants. Journal of Travel Medicine, 2021, 28, .	1.4	14
11	Genetic Diversity of SARS-CoV-2 among Travelers Arriving in Hong Kong. Emerging Infectious Diseases, 2021, 27, 2666-2668.	2.0	8
12	Factors Associated With Fatality Due to Avian Influenza A(H7N9) Infection in China. Clinical Infectious Diseases, 2020, 71, 128-132.	2.9	18
13	Genetic diversity of respiratory enteroviruses and rhinoviruses in febrile adults, Singapore, 2007â€2013. Influenza and Other Respiratory Viruses, 2020, 14, 67-71.	1.5	9
14	Locally Acquired Human Infection with Swine-Origin Influenza A(H3N2) Variant Virus, Australia, 2018. Emerging Infectious Diseases, 2020, 26, 143-147.	2.0	14
15	Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 619-628.	3.3	80
16	Bayesian Evaluation of Temporal Signal in Measurably Evolving Populations. Molecular Biology and Evolution, 2020, 37, 3363-3379.	3.5	81
17	CD4+ T Cells Recognize Conserved Influenza A Epitopes through Shared Patterns of V-Gene Usage and Complementary Biochemical Features. Cell Reports, 2020, 32, 107885.	2.9	11
18	Global Transmission, Spatial Segregation, and Recombination Determine the Long-Term Evolution and Epidemiology of Bovine Coronaviruses. Viruses, 2020, 12, 534.	1.5	21

#	Article	IF	Citations
19	Positive epistasis between viral polymerase and the $3\hat{a} \in ^2$ untranslated region of its genome reveals the epidemiologic fitness of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11038-11047.	3.3	22
20	Epidemiological trends in notified influenza cases in Australia's Northern Territory, 2007â€2016. Influenza and Other Respiratory Viruses, 2020, 14, 541-550.	1.5	9
21	Genome-Scale Phylogeny and Evolutionary Analysis of Ross River Virus Reveals Periodic Sweeps of Lineage Dominance in Western Australia, 1977–2014. Journal of Virology, 2020, 94, .	1.5	14
22	Influenza A-associated severe pneumonia in hospitalized patients: Risk factors and NAI treatments. International Journal of Infectious Diseases, 2020, 92, 208-213.	1.5	35
23	Forensic genomics of a novel Klebsiella quasipneumoniae type from a neonatal intensive care unit in China reveals patterns of colonization, evolution and epidemiology. Microbial Genomics, 2020, 6, .	1.0	12
24	A rapid pyrosequencing assay for the molecular detection of influenza viruses with reduced baloxavir susceptibility due to PA/I38X amino acid substitutions. Influenza and Other Respiratory Viruses, 2020, 14, 460-464.	1.5	12
25	Locally Acquired Human Infection with Swine-Origin Influenza A(H3N2) Variant Virus, Australia, 2018. Emerging Infectious Diseases, 2020, 26, .	2.0	0
26	Clinical characteristics and outcomes during a severe influenza season in China during 2017–2018. BMC Infectious Diseases, 2019, 19, 668.	1.3	16
27	A T164S mutation in the dengue virus NS1 protein is associated with greater disease severity in mice. Science Translational Medicine, $2019,11,.$	5.8	32
28	Phylogenetic analysis revealed the co-circulation of four dengue virus serotypes in Southern Thailand. PLoS ONE, 2019, 14, e0221179.	1.1	31
29	Emergence of Influenza A(H7N4) Virus, Cambodia. Emerging Infectious Diseases, 2019, 25, 1988-1991.	2.0	10
30	Antarctic Penguins as Reservoirs of Diversity for Avian Avulaviruses. Journal of Virology, 2019, 93, .	1.5	19
31	Baloxavir marboxil susceptibility of influenza viruses from the Asia-Pacific, 2012–2018. Antiviral Research, 2019, 164, 91-96.	1.9	51
32	Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nature Immunology, 2019, 20, 613-625.	7.0	180
33	Divergent Barmah Forest Virus from Papua New Guinea. Emerging Infectious Diseases, 2019, 25, 2266-2269.	2.0	11
34	Diversity of A(H5N1) clade 2.3.2.1c avian influenza viruses with evidence of reassortment in Cambodia, 2014-2016. PLoS ONE, 2019, 14, e0226108.	1.1	10
35	The evolution and genetic diversity of avian influenza A(H9N2) viruses in Cambodia, 2015 – 2016. PLoS ONE, 2019, 14, e0225428.	1.1	10
36	Intense interseasonal influenza outbreaks, Australia, 2018/19. Eurosurveillance, 2019, 24, .	3.9	27

#	Article	IF	CITATIONS
37	Evidence for Viral Interference and Cross-reactive Protective Immunity Between Influenza B Virus Lineages. Journal of Infectious Diseases, 2018, 217, 548-559.	1.9	49
38	Adaptive evolution during the establishment of European avianâ€like H 1 N 1 influenza A virus in swine. Evolutionary Applications, 2018, 11, 534-546.	1.5	12
39	FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants. PLoS Biology, 2018, 16, e2006026.	2.6	17
40	Divergent Human-Origin Influenza Viruses Detected in Australian Swine Populations. Journal of Virology, 2018, 92, .	1.5	16
41	Evolution and Spatiotemporal Dynamics of Enterovirus A71 Subgenogroups in Vietnam. Journal of Infectious Diseases, 2017, 216, 1371-1379.	1.9	19
42	The ecology and adaptive evolution of influenza A interspecies transmission. Influenza and Other Respiratory Viruses, 2017, 11, 74-84.	1.5	83
43	The Broad Host Range and Genetic Diversity of Mammalian and Avian Astroviruses. Viruses, 2017, 9, 102.	1.5	118
44	Extended Evaluation of Virological, Immunological and Pharmacokinetic Endpoints of CELADEN: A Randomized, Placebo-Controlled Trial of Celgosivir in Dengue Fever Patients. PLoS Neglected Tropical Diseases, 2016, 10, e0004851.	1.3	53
45	Genetic characterization of Enterovirus 71 strains circulating in Vietnam in 2012. Virology, 2016, 495, 1-9.	1.1	25
46	Evidence for the Introduction, Reassortment, and Persistence of Diverse Influenza A Viruses in Antarctica. Journal of Virology, 2016, 90, 9674-9682.	1.5	61
47	A Role of Influenza Virus Exposure History in Determining Pandemic Susceptibility and CD8 ⁺ T Cell Responses. Journal of Virology, 2016, 90, 6936-6947.	1.5	23
48	Differential age susceptibility to influenza B/Victoria lineage viruses in the 2015 Australian influenza season. Eurosurveillance, 2016, 21, .	3.9	37
49	RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion. PLoS Pathogens, 2015, 11, e1004902.	2.1	97
50	Adaptation of Pandemic H2N2 Influenza A Viruses in Humans. Journal of Virology, 2015, 89, 2442-2447.	1.5	29
51	Ecological Drivers of Virus Evolution: Astrovirus as a Case Study. Journal of Virology, 2015, 89, 6978-6981.	1.5	47
52	Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection. Nature Communications, 2015, 6, 7952.	5.8	107
53	The contrasting phylodynamics of human influenza B viruses. ELife, 2015, 4, e05055.	2.8	166
54	Molecular Epidemiology of Influenza A(H1N1)pdm09 Virus among Humans and Swine, Sri Lanka. Emerging Infectious Diseases, 2014, 20, 2080-4.	2.0	5

#	Article	IF	Citations
55	Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica. MBio, 2014, 5, e01098-14.	1.8	86
56	Preexisting CD8 ⁺ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1049-1054.	3.3	144
57	Identification and molecular characterization of novel and divergent HoBi-like pestiviruses from naturally infected cattle in India. Veterinary Microbiology, 2014, 174, 239-246.	0.8	52
58	Surveillance and characterization of avian influenza viruses from migratory water birds in eastern Hokkaido, the northern part of Japan, 2009–2010. Virus Genes, 2013, 46, 323-329.	0.7	11
59	Inferring patterns of influenza transmission in swine from multiple streams of surveillance data. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130872.	1.2	14
60	The Recent Establishment of North American H10 Lineage Influenza Viruses in Australian Wild Waterfowl and the Evolution of Australian Avian Influenza Viruses. Journal of Virology, 2013, 87, 10182-10189.	1.5	39
61	Emergence and Diversification of Dengue 2 Cosmopolitan Genotype in Pakistan, 2011. PLoS ONE, 2013, 8, e56391.	1.1	36
62	No evidence for intra-segment recombination of 2009 H1N1 influenza virus in swine. Gene, 2012, 494, 242-245.	1.0	16
63	Genetic Analysis. Methods in Molecular Biology, 2012, 865, 207-227.	0.4	2
64	Feasibility of reconstructed ancestral H5N1 influenza viruses for cross-clade protective vaccine development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 349-354.	3.3	52
65	Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Communications, 2011, 2, 163.	5.8	203
66	Long-term evolution and transmission dynamics of swine influenza A virus. Nature, 2011, 473, 519-522.	13.7	219
67	Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19359-19364.	3.3	146
68	An update of H5N1 viruses: Are they still a threat to Australia?. Microbiology Australia, 2011, 32, 42.	0.1	0
69	The emergence of pandemic influenza viruses. Protein and Cell, 2010, 1, 9-13.	4.8	140
70	Surveillance and Analysis of Avian Influenza Viruses, Australia. Emerging Infectious Diseases, 2010, 16, 1896-1904.	2.0	68
71	Establishment of an H6N2 Influenza Virus Lineage in Domestic Ducks in Southern China. Journal of Virology, 2010, 84, 6978-6986.	1.5	83
72	Rapid Detection of Reassortment of Pandemic H1N1/2009 Influenza Virus. Clinical Chemistry, 2010, 56, 1340-1344.	1.5	26

#	Article	lF	Citations
73	Reassortment of Pandemic H1N1/2009 Influenza A Virus in Swine. Science, 2010, 328, 1529-1529.	6.0	339
74	Detection of diverse astroviruses from bats in China. Journal of General Virology, 2009, 90, 883-887.	1.3	91
75	Dating the emergence of pandemic influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11709-11712.	3.3	387
76	Characterization of Avian Influenza Viruses A (H5N1) from Wild Birds, Hong Kong, 2004–2008. Emerging Infectious Diseases, 2009, 15, 402-407.	2.0	94
77	Gene flow and competitive exclusion of avian influenza A virus in natural reservoir hosts. Virology, 2009, 390, 289-297.	1.1	108
78	Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 2009, 459, 1122-1125.	13.7	1,870
79	Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: divergence of clade 2·2 viruses. Influenza and Other Respiratory Viruses, 2009, 3, 59-62.	1.5	102
80	The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology, 2008, 380, 243-254.	1,1	140
81	ldentification of the Progenitors of Indonesian and Vietnamese Avian Influenza A (H5N1) Viruses from Southern China. Journal of Virology, 2008, 82, 3405-3414.	1.5	81
82	Evolutionary Dynamics and Emergence of Panzootic H5N1 Influenza Viruses. PLoS Pathogens, 2008, 4, e1000161.	2.1	143
83	Multiple Sublineages of Influenza A Virus (H5N1), Vietnam, 2005â^'2007. Emerging Infectious Diseases, 2008, 14, 632-636.	2.0	91
84	Toward a Unified Nomenclature System for Highly Pathogenic Avian Influenza Virus (H5N1). Emerging Infectious Diseases, 2008, 14, e1-e1.	2.0	273
85	Characterization of Low-Pathogenic H5 Subtype Influenza Viruses from Eurasia: Implications for the Origin of Highly Pathogenic H5N1 Viruses. Journal of Virology, 2007, 81, 7529-7539.	1.5	114
86	Establishment of Influenza A Virus (H6N1) in Minor Poultry Species in Southern China. Journal of Virology, 2007, 81, 10402-10412.	1.5	106
87	Detection of a Novel and Highly Divergent Coronavirus from Asian Leopard Cats and Chinese Ferret Badgers in Southern China. Journal of Virology, 2007, 81, 6920-6926.	1.5	127
88	Evolutionary Insights into the Ecology of Coronaviruses. Journal of Virology, 2007, 81, 4012-4020.	1.5	240
89	The Genesis and Evolution of H9N2 Influenza Viruses in Poultry from Southern China, 2000 to 2005. Journal of Virology, 2007, 81, 10389-10401.	1.5	214
90	A Phylogenetic Evaluation of Whether Endophytes Become Saprotrophs at Host Senescence. Microbial Ecology, 2007, 53, 579-590.	1.4	313

#	Article	IF	CITATIONS
91	Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic control. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2845-2850.	3.3	557
92	The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia, 2006, 98, 571-583.	0.8	18
93	Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology, 2006, 350, 258-268.	1.1	212
94	The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia, 2006, 98, 571-583.	0.8	59
95	Prevalence and Genetic Diversity of Coronaviruses in Bats from China. Journal of Virology, 2006, 80, 7481-7490.	1.5	301
96	Emergence and predominance of an H5N1 influenza variant in China. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16936-16941.	3.3	279
97	Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia, 2005, 97, 1034-1046.	0.8	60
98	Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia, 2005, 97, 1034-1046.	0.8	105