
Kishna Ram Genwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/875659/publications.pdf Version: 2024-02-01

KISHNA RAM CENNAA

#	Article	IF	CITATIONS
1	Photogalvanic solar energy conversion: Study with photosensitizers Toluidine Blue and Malachite Green in presence of NaLS. Applied Energy, 2009, 86, 1431-1436.	10.1	46
2	Use of tergitol-7 in photogalvanic cell for solar energy conversion and storage: Toluidine blue-glucose system. International Journal of Energy Research, 1996, 20, 581-585.	4.5	38
3	Energy efficiency, solar energy conversion and storage in photogalvanic cell. Energy Conversion and Management, 2013, 66, 121-126.	9.2	29
4	Comparative Study of Photosensitizing Dyes in Photogalvanic Cells for Solar Energy Conversion and Storage: Brij-35â^'Diethylenetriamine Pentaacetic Acid (DTPA) System. Energy & Fuels, 2009, 23, 1024-1031.	5.1	25
5	Role of heterocyclic dye (Azur A) as a photosensitizer in photogalvanic cell for solar energy conversion and storage: NaLS–ascorbic acid system. Solar Energy, 2006, 80, 1213-1219.	6.1	22
6	Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS-ascorbic acid system. Journal of Chemical Sciences, 2004, 116, 339-345.	1.5	19
7	Photogalvanic Performance of DSS-Indigo Carmine-EDTA Cell Materials. Asian Journal of Chemistry, 2017, 29, 1215-1219.	0.3	6
8	The Study of the Photogalvanic Effect in a Photogalvanic Cell Containing Acid Fuchsin as a Photosensitizer in a Benzethonium Chloride-EDTA System. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2013, 35, 685-693.	2.3	5
9	Dye Sensitized Photogalvanic Solar Cells: Studies in a Methyl Green-NaLS System in View of Energy Conversion. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2012, 34, 1261-1270.	2.3	4
10	The Role of Ascorbic Acid in a Photogalvanic Solar Cell Containing a Crystal Violet-diocyle Sulphosuccinate System and to Study the Energy Efficiency of the Cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2012, 34, 1815-1824.	2.3	3
11	Photocurrent response of phloxin B-cetyltrimethylammonium bromide photogalvanic cell device. Materials Science-Poland, 2015, 33, 612-619.	1.0	2
12	Fabrication of DSSCs with biebrich scarlet, alizarine cyanine green and evans blue dyes as new organic photosensitizers. Materials Science-Poland, 2018, 36, 655-661.	1.0	2