Toshiaki Enoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8756396/publications.pdf

Version: 2024-02-01

112 papers

4,234 citations

218677 26 h-index 110387 64 g-index

116 all docs

116 does citations

116 times ranked

4216 citing authors

#	Article	IF	CITATIONS
1	Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Physical Review B, 2005, 71, .	3.2	593
2	Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Physical Review B, 2006, 73, .	3.2	366
3	Electronic states of graphene nanoribbons and analytical solutions. Science and Technology of Advanced Materials, 2010, 11, 054504.	6.1	336
4	Magnetic TTF-Based Charge-Transfer Complexes. Chemical Reviews, 2004, 104, 5449-5478.	47.7	313
5	Disordered Magnetism at the Metal-Insulator Threshold in Nano-Graphite-Based Carbon Materials. Physical Review Letters, 2000, 84, 1744-1747.	7.8	309
6	Structure and electronic properties of graphite nanoparticles. Physical Review B, 1998, 58, 16387-16395.	3.2	229
7	Electronic structures of graphene edges and nanographene. International Reviews in Physical Chemistry, 2007, 26, 609-645.	2.3	228
8	Multiproperty Molecular Materials: TTFâ€Based Conducting and Magnetic Molecular Materials. European Journal of Inorganic Chemistry, 2004, 2004, 933-941.	2.0	165
9	Nanographene and Graphene Edges: Electronic Structure and Nanofabrication. Accounts of Chemical Research, 2013, 46, 2202-2210.	15.6	134
10	The edge state of nanographene and the magnetism of the edge-state spins. Solid State Communications, 2009, 149, 1144-1150.	1.9	126
11	Heat-treatment effect on the nanosized graphite π-electron system during diamond to graphite conversion. Physical Review B, 2000, 62, 11209-11218.	3.2	117
12	Magnetic nanographite: an approach to molecular magnetism. Journal of Materials Chemistry, 2005, 15, 3999.	6.7	117
13	Hydrogen-alkali-metal-graphite ternary intercalation compounds. Journal of Materials Research, 1990, 5, 435-466.	2.6	91
14	Role of edge geometry and chemistry in the electronic properties of graphene nanostructures. Faraday Discussions, 2014, 173, 173-199.	3.2	58
15	Nanographene and Nanodiamond; New Members in the Nanocarbon Family. Chemistry - an Asian Journal, 2009, 4, 796-804.	3.3	50
16	Interface Effect on the Electronic Structure of Alkanethiol-Coated Platinum Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 10134-10140.	2.6	49
17	Unconventional electronic and magnetic functions of nanographene-based host–guest systems. Dalton Transactions, 2008, , 3773.	3.3	45
18	Structure and magnetic properties of detonation nanodiamond chemically modified by copper. Journal of Applied Physics, 2010, 107, .	2.5	45

#	Article	IF	CITATIONS
19	Direct imaging of monovacancy-hydrogen complexes in a single graphitic layer. Physical Review B, 2014, 89, .	3.2	44
20	Honeycomb superperiodic pattern and its fine structure near the armchair edge of graphene observed by low-temperature scanning tunneling microscopy. Physical Review B, 2010, 81, .	3.2	41
21	Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. Physical Review B, 2013, 87, .	3.2	41
22	Effect of Fluorination on Nano-Sizedπ-Electron Systems. Journal of the Physical Society of Japan, 2001, 70, 175-185.	1.6	39
23	Origin of Current Enhancement through a Ferrocenylundecanethiol Island Embedded in Alkanethiol SAMs by Using Electrochemical Potential Control. Journal of Physical Chemistry C, 2007, 111, 7561-7564.	3.1	38
24	Magnetic edge state and dangling bond state of nanographene in activated carbon fibers. Physical Review B, 2011, 84, .	3.2	35
25	57Fe Mössbauer spectroscopic and magnetic study of a spin-crossover polymer complex, Fe(3-chloropyridine)2Ni(CN)4. Journal of Radioanalytical and Nuclear Chemistry, 1999, 239, 285-290.	1.5	29
26	Preparation of a Mott insulator based on a BEDT-TTF charge transfer complex of hydrogen cyananilate: $\hat{l}\pm\hat{a}$ \in 2-(BEDT-TTF)2HCNAL. Journal of Materials Chemistry, 2001, 11, 2211-2215.	6.7	27
27	Electron Wave Function in Armchair Graphene Nanoribbons. Journal of the Physical Society of Japan, 2011, 80, 044710.	1.6	26
28	Diamond-to-graphite conversion in nanodiamond and the electronic properties of nanodiamond-derived carbon system. Physics of the Solid State, 2004, 46, 651-656.	0.6	23
29	Combined Experimental and DFT Study of the Chemical Binding of Copper Ions on the Surface of Nanodiamonds. Bulletin of the Chemical Society of Japan, 2014, 87, 693-704.	3.2	22
30	ESR study of activated carbon fibers: preliminary results. Journal of Materials Research, 1993, 8, 2282-2287.	2.6	21
31	Electronic and Magnetic Properties of π–dInteraction System (EDTDM)2FeBr4. Journal of the Physical Society of Japan, 2005, 74, 1508-1520.	1.6	21
32	Conducting Materials Containing Paramagnetic Hexacyanometallate [Cr(CN) 6] 3â^' and Iodine Substituted Organic Donor [DIETS]. Molecular Crystals and Liquid Crystals, 2002, 376, 25-32.	0.9	20
33	Conduction Properties of Incommensurate Misfit Layer Compounds (CeS)1.19(TiS2)n(n=1,2). Journal of the Physical Society of Japan, 1995, 64, 4296-4307.	1.6	19
34	Fluorine-Introduced <i>>sp</i> ³ -Carbon Sites in a Nano-Sized π-Electron System and their Effects on the Electronic Properties. Molecular Crystals and Liquid Crystals, 2000, 340, 289-294.	0.3	19
35	Solid State Properties of Charge Transfer Complexes of TTF Derivatives with 3D-Transition Metal Halides. Molecular Crystals and Liquid Crystals, 1993, 233, 325-334.	0.3	17
36	Anomalous Spin-Lattice Relaxation Induced by Helium Gas in Microporous Carbon. Journal of the Physical Society of Japan, 1995, 64, 2614-2620.	1.6	16

3

#	Article	IF	CITATIONS
37	Molecular Antiferromangets Based on TTF-TYPE Radical Ion Salts. Molecular Crystals and Liquid Crystals, 1997, 305, 425-434.	0.3	16
38	Preparation and Properties of a Hydroxy-TEMPO-Substituted TTF and ITS CT Complexes. Molecular Crystals and Liquid Crystals, 1995, 268, 153-159.	0.3	13
39	Electric field induced sp3-to-sp2 conversion and nonlinear electron transport in iron-doped diamond-like carbon thin film. Journal of Applied Physics, 2010, 107, .	2.5	13
40	Effects of Alkali Substitution and Pressure on the Charge-Density Wave Transitions of Two-Dimensional Metals K3Cu8S6and Rb3Cu8S6. Journal of the Physical Society of Japan, 1993, 62, 647-658.	1.6	12
41	Magnetic Properties of (C ₁ TEX-TTF)FeBr ₄ (XËS, Se). Molecular Crystals and Liquid Crystals, 1999, 335, 293-302.	0.3	12
42	Magnetic Properties of Hydrogenâ€Terminated Surface Layer of Diamond Nanoparticles. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 565-572.	2.1	12
43	Magnetic Edge State of Nanographene and Unconventional Nanographene-Based Host–Guest Systems. Bulletin of the Chemical Society of Japan, 2012, 85, 249-264.	3.2	12
44	Chemically induced topological zero mode at graphene armchair edges. Physical Chemistry Chemical Physics, 2017, 19, 5145-5154.	2.8	12
45	Preparation and Properties of New Multi-Spin Complexes. Molecular Crystals and Liquid Crystals, 1997, 306, 409-414.	0.3	10
46	Magnetic Properties of Activated Carbon Fibers and their Iodine-Doping Effect. Molecular Crystals and Liquid Crystals, 1998, 310, 273-278.	0.3	10
47	Electronic and Magnetic Properties of ï€-d Interaction System: (EDTDM) 2 FeBr 4. Molecular Crystals and Liquid Crystals, 2002, 376, 513-518.	0.9	10
48	Pd Nanoparticle Embedded with Only One Co Atom Behaves as a Single-Particle Magnet. Journal of the Physical Society of Japan, 2008, 77, 103701.	1.6	10
49	Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?. Physica Scripta, 2018, 93, 053001.	2.5	10
50	Thermal Expansion of Tetrakis(alkylthio) tetrathiafulvalenes. Molecular Crystals and Liquid Crystals, 1995, 268, 161-172.	0.3	9
51	Molecular Magnets Based on Charge Transfer Complexes. Molecular Crystals and Liquid Crystals, 1996, 285, 19-26.	0.3	9
52	Preparation and Properties of 2-(O-Halophenyl)-α-Nitronyl Nitroxides. Molecular Crystals and Liquid Crystals, 1997, 306, 279-284.	0.3	9
53	$2kFCDW$ Transition in \hat{I}^2 -(BEDT-TTF) $2PF6Family$ Salts. Journal of the Physical Society of Japan, 1998 , 67 , 4193 - 4197 .	1.6	9
54	Ï€- d Interaction-Based Molecular Magnets in TTF-Type Salts. Molecular Crystals and Liquid Crystals, 2002, 376, 535-542.	0.9	9

#	Article	IF	Citations
55	Magnetism of Nanographene-Based Microporous Carbon and Its Applications: Interplay of Edge Geometry and Chemistry Details in the Edge State. Physical Review Applied, 2018, 9, .	3.8	9
56	DV-XαCalculation and Ultraviolet Photoelectron Spectra of Gold Trichloride-Graphite Intercalation Compound (AuCl3-GIC). Journal of the Physical Society of Japan, 1997, 66, 3424-3433.	1.6	8
57	Electron transport properties of graphene with charged impurities and vacancy defects. Journal of Materials Research, 2013, 28, 1097-1104.	2.6	8
58	Crystal Structure and Physical Properties of π– <i>d</i> System κ-(BDH-TTP) ₂ FeBr ₄ . Journal of the Physical Society of Japan, 2013, 82, 054706.	1.6	8
59	Magnetic Properties of Adsorbed Oxygen in Microporous Carbon. Molecular Crystals and Liquid Crystals, 1997, 306, 103-110.	0.3	7
60	PROPERTY OF SELF-ASSEMBLED MONOLAYERS OF LONG-ALKYL-CHAIN-SUBSTITUTED TTF DIRIVATIVE. Molecular Crystals and Liquid Crystals, 2003, 407, 121-127.	0.9	7
61	Mechanical compression induced short-range ordering of nanographene spins. Physical Review B, 2010, 82, .	3.2	7
62	Electronic Properties of Sodium-Hydride and Potassium-Mercury Ternary Graphite Intercalation Compounds. Molecular Crystals and Liquid Crystals, 1992, 216, 253-258.	0.3	6
63	Novel Molecular Magnets Based on Organic Complexes. Molecular Crystals and Liquid Crystals, 1999, 334, 379-388.	0.3	6
64	¹²⁹ I Mössbauer Effect of Iodine Absorbed in Activated Carbon Fibers. Molecular Crystals and Liquid Crystals, 2000, 340, 301-306.	0.3	6
65	Classes of Nanomagnets Created from Alkanethiol oated Pt or Pd Nanoparticles and Their Alloys with Co. European Journal of Inorganic Chemistry, 2010, 2010, 4279-4287.	2.0	6
66	Novel Structure of Microporous Activated Carbon Fibers and Their Gas Adsorption. Materials Research Society Symposia Proceedings, 1994, 349, 73.	0.1	5
67	Preparation and properties of Aromatic Compounds Bearing Substituents with Unpaired Electron. Molecular Crystals and Liquid Crystals, 1996, 279, 73-76.	0.3	5
68	Characterization and Electronic Properties of TTF SAMs on Au (111). Molecular Crystals and Liquid Crystals, 2001, 370, 273-276.	0.3	5
69	Structure and physical properties of isopropyl TTF semisquarates. New Journal of Chemistry, 2009, 33, 1249.	2.8	5
70	Thermal Properties of Tetrakis(Alkyltelluro)Tetrathiafulvalene (TTeC _n -TTF). Molecular Crystals and Liquid Crystals, 1991, 196, 167-175.	0.7	4
71	Magnetism in Incommensurate Layer Compounds (RES) _{<i>x</i>} VS ₂ (Re=Rare) Tj ET	Qq1_1_0.78	84314 rgBT /(
72	Physical properties ofi∈-d interaction-based molecular conducting magnet (EDO-TTFBr2)2FeCl4 under pressure. Journal of Low Temperature Physics, 2006, 142, 477-480.	1.4	4

#	Article	IF	CITATIONS
73	Magnetic and Transport Properties of π– <i>d</i> System κ-(BDH-TTP) ₂ FeCl ₄ . Journal of the Physical Society of Japan, 2013, 82, 124709.	1.6	4
74	Magnetic Torque Studies of π– <i>d</i> System κ-(BDH-TTP) ₂ FeX ₄ (X = Br, Cl). Journal of the Physical Society of Japan, 2014, 83, 023704.	1.6	4
75	Galvanomagnetic, Optical Properties and Ultraviolet Photoelectron Spectra of Potassium-Oxygen-Graphite Intercalation Compounds. Journal of the Physical Society of Japan, 1997, 66, 158-168.	1.6	4
76	Electronic Structure and Transport Prperties of AuCl ₃ -GIC. Molecular Crystals and Liquid Crystals, 1994, 245, 1-6.	0.3	3
77	Electronic Structures of Incommensurate Layered Compounds (MS) _x TaS ₂ (M=RARE EARTHS, Pb, Sn). Molecular Crystals and Liquid Crystals, 1994, 245, 43-48.	0.3	3
78	Varieties of Crystalline Architecture by Using Hydrogen Bonding in Biimidazolate Metal Complex Systems. Part 1: Dimer Complex. Molecular Crystals and Liquid Crystals, 1996, 278, 199-207.	0.3	3
79	Synthesis, Structure and Magnetic Properties of a Two- Dimensional Nickel(II) Coordination Polymer, $[Ni(pzdc)(pyz)].2H < sub > 2 < /sub > O < sub > n < /sub > 2 < /sub > pzdc = pyrazine-23-dicarboxylic acid;) Tj ET$	「Qq d.d 0.7	784 3 14 rgBT
80	Magnetism in New Classes of TTF-Based Charge Transfer Complexes. Molecular Crystals and Liquid Crystals, 2002, 379, 131-140.	0.9	3
81	Diagnostics of plasmon resonance in optical absorption spectra of nanographite aqueous suspensions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 220-223.	0.6	3
82	The c-Axis Magnetoresistance and Thermoelectric Power of CuCl2 Graphite Intercalation Compounds. Molecular Crystals and Liquid Crystals, 1998, 310, 249-254.	0.3	2
83	Nano-Graphites and their Potassium Intercalated Compounds: Structural and Electronic Properties. Molecular Crystals and Liquid Crystals, 2000, 340, 793-798.	0.3	2
84	Electrochemical Properties of Self-Assembled Monolayers Composed of TTF Derivative. Molecular Crystals and Liquid Crystals, 2002, 377, 395-398.	0.9	2
85	Magnetic Phase Diagram of Three-Dimensional Diluted Ising Antiferromagnet Ni0.8Mg0.2(OH)2. Journal of the Physical Society of Japan, 2004, 73, 206-215.	1.6	2
86	Magnetic Properties and Interplay between Nanographene Host and Nitric Acid Guest in Nanographene-Based Nanoporous Carbon. Bulletin of the Chemical Society of Japan, 2012, 85, 376-388.	3.2	2
87	Host-Guest Systems in Microporous Carbons. Materials Research Society Symposia Proceedings, 1998, 548, 3.	0.1	1
88	Transport Properties and Magnetism of \hat{I}^2 -MnO2. Materials Research Society Symposia Proceedings, 1999, 602, 17.	0.1	1
89	Successive Magnetic Phase Transitions of Cu _{c(sub>cessive Magnetic Phase Transitions of Cu_{cessive Magnetic Phase Transitions of Compounds. Molecular Crystals and Liquid Crystals, 2000, 340, 107-112.}}	0.3	1
90	STRUCTURE AND ELECTRONIC PROPERTIES OF SP 2 /SP 3 MIXED NANO-CARBON SYSTEMS. Molecular Crystals and Liquid Crystals, 2002, 386, 145-149.	0.9	1

#	Article	IF	Citations
91	Millimeter Wave ESR Measurements of (DMET) 2 FeBr 4. Molecular Crystals and Liquid Crystals, 2002, 379, 29-34.	0.9	1
92	π–d INTERACTION BASED MOLECULAR CONDUCTING MAGNETS: HOW TO INCREASE THE EFFECTS OF THE π–d INTERACTION. Cosmos, 2008, 04, 131-140.	0.4	1
93	Interplay of Edge-State Spins and $\ddot{l}f$ -Dangling Bond Spins in the Magnetic Structure of Nanographene. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 310-318.	2.1	1
94	STM/STS observations of zigzag and armchair edges of graphite. Tanso, 2007, 2007, 166-173.	0.1	1
95	STM/STS Observations of Graphene Edges. Hyomen Kagaku, 2008, 29, 304-309.	0.0	1
96	H-NMR study of magnetic anomaly in (BEDT-TTF)/sub 3/CuBr/sub 4/. , 1994, , .		0
97	Syntheses and properties of hydroxy-tempo-substituted and phenoxyl-substituted TTF derivatives. , 1994, , .		0
98	Electronic Structures of Sodium-Hydride-Graphite Intercalation Compounds. Molecular Crystals and Liquid Crystals, 1994, 245, 7-12.	0.3	0
99	c-Axis Compressibility and Thermal Expansion of Gold Trichloride-Graphite Intercalation Compounds (AuCl3-GICs). Journal of the Physical Society of Japan, 1995, 64, 4748-4758.	1.6	0
100	Magnetic and Transport Properties of Heat-Treated Polyparaphenylene-Based Carbons. Materials Research Society Symposia Proceedings, 1997, 496, 533.	0.1	0
101	The Contribution of Intercalate to the Electronic Structure and Transport Properties for Potassium-Oxygen-Graphite Intercalation Compounds. Molecular Crystals and Liquid Crystals, 1998, 310, 243-248.	0.3	0
102	Anomalous Angular Dependence of Magnetoresistance in MCl2-GIC's (M=Cu and Co). Molecular Crystals and Liquid Crystals, 2000, 340, 19-24.	0.3	0
103	Magnetic Anisotropy of Cerium Endohedral Metallofullerene. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	0
104	Ï€- d Interaction-Based Molecular Magnets: Role of Sulfur-to-Selenium Substitution. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 883-890.	1.6	0
105	Pressure effect on BDA-TTP conductors. Journal of Low Temperature Physics, 2006, 142, 239-245.	1.4	0
106	Physical Properties of π-d Interaction-Based Molecular Conducting Magnet (EDO-TTFBr2)2FeCl4 Under Pressure. Journal of Low Temperature Physics, 2007, 142, 481-484.	1.4	0
107	Pressure Effect on BDA-TTP Conductors. Journal of Low Temperature Physics, 2007, 142, 243-249.	1.4	0
108	Molecular Electronics under Electrochemical Environment. Hyomen Kagaku, 2008, 29, 253-259.	0.0	0

#	ARTICLE	IF	CITATIONS
109	Anomalous spin relaxation in graphene nanostructures on the high temperature annealed surface of hydrogenated diamond nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 19209-19218.	2.8	0
110	Structure and Solid State Properties of Nano-Graphite Derived from Nano-Diamond. Tanso, 2001, 2001, 139-146.	0.1	0
111	π–d INTERACTION BASED MOLECULAR CONDUCTING MAGNETS: HOW TO INCREASE THE EFFECTS OF THE π–d INTERACTION. , 2009, , 173-182.		0
112	Magnetic Structures of Edge-State Spins in Nanographene and a Network of Nanographene Sheets. , 2011, , 151-166.		0