List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8756219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virus-Induced Neuronal Apoptosis Blocked by the Herpes Simplex Virus Latency-Associated Transcript. Science, 2000, 287, 1500-1503.	6.0	419
2	Region of Herpes Simplex Virus Type 1 Latency-Associated Transcript Sufficient for Wild-Type Spontaneous Reactivation Promotes Cell Survival in Tissue Culture. Journal of Virology, 2001, 75, 3636-3646.	1.5	129
3	Identification of a major regulatory sequence in the latency associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1). Virology, 1991, 182, 287-297.	1.1	107
4	The Latency-Associated Transcript Gene Enhances Establishment of Herpes Simplex Virus Type 1 Latency in Rabbits. Journal of Virology, 2000, 74, 1885-1891.	1.5	106
5	The Role of LAT in Increased CD8 ⁺ T Cell Exhaustion in Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus 1. Journal of Virology, 2011, 85, 4184-4197.	1.5	103
6	A Gene Capable of Blocking Apoptosis Can Substitute for the Herpes Simplex Virus Type 1 Latency-Associated Transcript Gene and Restore Wild-Type Reactivation Levels. Journal of Virology, 2002, 76, 1224-1235.	1.5	96
7	Level of Herpes Simplex Virus Type 1 Latency Correlates with Severity of Corneal Scarring and Exhaustion of CD8 ⁺ T Cells in Trigeminal Ganglia of Latently Infected Mice. Journal of Virology, 2009, 83, 2246-2254.	1.5	79
8	The role of natural killer cells in protection of mice against death and corneal scarring following ocular HSV-1 infection. Antiviral Research, 2000, 45, 33-45.	1.9	65
9	A Recombinant Herpes Simplex Virus Type 1 Expressing Two Additional Copies of gK Is More Pathogenic than Wild-Type Virus in Two Different Strains of Mice. Journal of Virology, 2007, 81, 12962-12972.	1.5	59
10	A Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutant with Increased Virulence and Reduced Spontaneous Reactivation. Journal of Virology, 1999, 73, 920-929.	1.5	54
11	Expression of herpes simplex virus type 1 glycoprotein B in insect cells. Virus Research, 1992, 22, 25-39.	1.1	53
12	The Role of Interleukin (IL)â€⊋ and ILâ€4 in Herpes Simplex Virus Type 1 Ocular Replication and Eye Disease. Journal of Infectious Diseases, 1999, 179, 1086-1093.	1.9	51
13	Immunoselection of recombinant baculoviruses expressing high levels of biologically active herpes simplex virus type 1 glycoprotein D. Archives of Virology, 1991, 121, 163-178.	0.9	49
14	Comparison of Adjuvant Efficacy of Herpes Simplex Virus Type 1 Recombinant Viruses Expressing T H 1 and T H 2 Cytokine Genes. Journal of Virology, 2003, 77, 5774-5783.	1.5	49
15	Prospects for Developing an Effective Vaccine Against Ocular Herpes Simplex Virus Infection. Current Eye Research, 2005, 30, 929-942.	0.7	47
16	Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection. PLoS Pathogens, 2020, 16, e1008971.	2.1	46
17	The Role of a Glycoprotein K (gK) CD8 ⁺ T-Cell Epitope of Herpes Simplex Virus on Virus Replication and Pathogenicity. , 2009, 50, 2903.		44
18	Baculovirus-expressed glycoprotein E (gE) of herpes simplex virus type-1 (HSV-1) protects mice against lethal intraperitoneal and lethal ocular HSV-1 challenge. Virology, 1992, 188, 469-476.	1.1	43

#	Article	IF	CITATIONS
19	Deficiency of GATA3-Positive Macrophages Improves Cardiac Function Following MyocardialÂInfarction or Pressure Overload Hypertrophy. Journal of the American College of Cardiology, 2018, 72, 885-904.	1.2	43
20	The complete sequence of bluetongue virus serotype 10 segment 3 and its predicted VP3 polypeptide compared with those of BTV serotype 17. Virus Research, 1985, 3, 181-190.	1.1	42
21	Roles of M1 and M2 Macrophages in Herpes Simplex Virus 1 Infectivity. Journal of Virology, 2017, 91, .	1.5	42
22	Role of Dendritic Cells in Enhancement of Herpes Simplex Virus Type 1 Latency and Reactivation in Vaccinated Mice. Vaccine Journal, 2008, 15, 1859-1867.	3.2	41
23	Herpes Simplex Virus 1 ICP22 Suppresses CD80 Expression by Murine Dendritic Cells. Journal of Virology, 2019, 93, .	1.5	39
24	Three Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutants with Distinct and Asymmetric Effects on Virulence in Mice Compared with Rabbits. Journal of Virology, 2001, 75, 9018-9028.	1.5	38
25	Lymphoid-Related CD11c ⁺ CD8α ⁺ Dendritic Cells Are Involved in Enhancing Herpes Simplex Virus Type 1 Latency. Journal of Virology, 2008, 82, 9870-9879.	1.5	36
26	Interactions between Herpesvirus Entry Mediator (TNFRSF14) and Latency-Associated Transcript during Herpes Simplex Virus 1 Latency. Journal of Virology, 2014, 88, 1961-1971.	1.5	36
27	A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages. Virology Journal, 2009, 6, 56.	1.4	35
28	The effect of latency-associated transcript on the herpes simplex virus type 1 latency-reactivation phenotype is mouse strain-dependent. Journal of General Virology, 2001, 82, 1117-1122.	1.3	34
29	Temozolomide Does Not Impair Gene Therapy-Mediated Antitumor Immunity in Syngeneic Brain Tumor Models. Clinical Cancer Research, 2014, 20, 1555-1565.	3.2	32
30	Recombinant Herpes Simplex Virus Type 1 Expressing Murine Interleukin-4 Is Less Virulent than Wild-Type Virus in Mice. Journal of Virology, 2001, 75, 9029-9036.	1.5	31
31	Improved Protection from Primary Ocular HSV-1 Infection and Establishment of Latency Using Multigenic DNA Vaccines. , 2004, 45, 506.		31
32	CD8 ⁺ T Cells Play a Bystander Role in Mice Latently Infected with Herpes Simplex Virus 1. Journal of Virology, 2016, 90, 5059-5067.	1.5	31
33	Baculovirus expressed herpes simplex virus type 1 glycoprotein C protects mice from lethal HSV-1 infection. Antiviral Research, 1992, 18, 291-302.	1.9	30
34	Binding of HSV-1 Glycoprotein K (gK) to Signal Peptide Peptidase (SPP) Is Required for Virus Infectivity. PLoS ONE, 2014, 9, e85360.	1.1	30
35	The corneas of naive mice contain both CD4+ and CD8+ T cells. Molecular Vision, 2007, 13, 1802-12.	1.1	30
36	Baculovirus-expressed glycoprotein g of herpes simplex virus type 1 partially protects vaccinated mice against lethal HSV-1 challenge. Virology, 1992, 190, 233-239.	1.1	28

#	Article	IF	CITATIONS
37	Vaccination with different HSV-1 glycoproteins induces different patterns of ocular cytokine responses following HSV-1 challenge of vaccinated mice. Vaccine, 1999, 17, 2576-2582.	1.7	28
38	Perforin pathway is essential for protection of mice against lethal ocular HSV-1 challenge but not corneal scarring. Virus Research, 1999, 65, 97-101.	1.1	27
39	Recombinant Herpes Simplex Virus Type 1 (HSV-1) Codelivering Interleukin-12p35 as a Molecular Adjuvant Enhances the Protective Immune Response against Ocular HSV-1 Challenge. Journal of Virology, 2005, 79, 3297-3308.	1.5	27
40	CD8+-dependent CNS demyelination following ocular infection of mice with a recombinant HSV-1 expressing murine IL-2. Experimental Neurology, 2005, 193, 1-18.	2.0	27
41	Epitope mapping of HSV-1 glycoprotein K (gK) reveals a T cell epitope located within the signal domain of gK. Virus Research, 2007, 128, 71-80.	1.1	27
42	Role of Herpes Simplex Virus Type 1 (HSV-1) Glycoprotein K (gK) Pathogenic CD8+ T Cells in Exacerbation of Eye Disease. Frontiers in Immunology, 2018, 9, 2895.	2.2	27
43	MHC-II but not MHC-I responses are required for vaccine-induced protection against ocular challenge with HSV-1. Current Eye Research, 1997, 16, 1152-1158.	0.7	26
44	The US5 Open Reading Frame of Herpes simplex Virus Type 1 Does Encode a Glycoprotein (gJ). Intervirology, 1998, 41, 91-97.	1.2	26
45	Either a CD4+or CD8+T cell function is sufficient for clearance of infectious virus from trigeminal ganglia and establishment of herpes simplex virus type 1 latency in mice. Microbial Pathogenesis, 1999, 27, 387-394.	1.3	26
46	Overexpression of Interleukin-2 by a Recombinant Herpes Simplex Virus Type 1 Attenuates Pathogenicity and Enhances Antiviral Immunity. Journal of Virology, 2002, 76, 9069-9078.	1.5	26
47	Involvement of CD8+T-cells in exacerbation of corneal scarring in mice. Current Eye Research, 2004, 29, 145-151.	0.7	26
48	Macrophages Are Important Determinants of Acute Ocular HSV-1 Infection in Immunized Mice. , 2007, 48, 5605.		25
49	CD8α Dendritic Cells Drive Establishment of HSV-1 Latency. PLoS ONE, 2014, 9, e93444.	1.1	25
50	Vaccination with Herpes Simplex Virus Type 1 Glycoprotein K Impairs Clearance of Virus from the Trigeminal Ganglia Resulting in Chronic Infection. Virology, 1996, 224, 330-333.	1.1	24
51	The Latency-Associated Transcript Inhibits Apoptosis via Downregulation of Components of the Type I Interferon Pathway during Latent Herpes Simplex Virus 1 Ocular Infection. Journal of Virology, 2019, 93, .	1.5	24
52	The role of TH1 and TH2 cytokines in HSV-1-induced corneal scarring. Ocular Immunology and Inflammation, 2002, 10, 105-116.	1.0	23
53	Reduced severity of HSV-1-induced corneal scarring in IL-12-deficient mice. Virus Research, 2002, 90, 317-326.	1.1	23
54	Inclusion of CD80 in HSV Targets the Recombinant Virus to PD-L1 on DCs and Allows Productive Infection and Robust Immune Responses. PLoS ONE, 2014, 9, e87617.	1.1	23

#	Article	IF	CITATIONS
55	Role of Anti–Glycoproteins D (Anti–gD) and K (Anti–gK) IgGs in Pathology of Herpes Stromal Keratitis in Humans. , 2007, 48, 2185.		22
56	Exacerbation of corneal scarring in HSV-1 gK-immunized mice correlates with elevation of CD8+CD25+ T cells in corneas of ocularly infected mice. Virology, 2010, 399, 11-22.	1.1	21
57	Immunization with Different Viral Antigens Alters the Pattern of T Cell Exhaustion and Latency in Herpes Simplex Virus Type 1-Infected Mice. Journal of Virology, 2010, 84, 12315-12324.	1.5	21
58	Role of CD8 ⁺ T Cells and Lymphoid Dendritic Cells in Protection from Ocular Herpes Simplex Virus 1 Challenge in Immunized Mice. Journal of Virology, 2014, 88, 8016-8027.	1.5	21
59	Herpes Simplex Virus 1 Latency and the Kinetics of Reactivation Are Regulated by a Complex Network of Interactions between the Herpesvirus Entry Mediator, Its Ligands (gD, BTLA, LIGHT, and CD160), and the Latency-Associated Transcript. Journal of Virology, 2018, 92, .	1.5	21
60	Infection of BALB/c Mice with a Herpes Simplex Virus Type 1 Recombinant Virus Expressing IFN-Î ³ Driven by the LAT Promoter. Virology, 2002, 302, 144-154.	1.1	20
61	CD11c Controls Herpes Simplex Virus 1 Responses To Limit Virus Replication during Primary Infection. Journal of Virology, 2011, 85, 9945-9955.	1.5	20
62	Loss of <i>ICP22</i> in HSV-1 Elicits Immune Infiltration and Maintains Stromal Keratitis Despite Reduced Primary and Latent Virus Infectivity. , 2019, 60, 3398.		20
63	Interrelationship of Primary Virus Replication, Level of Latency, and Time to Reactivation in the Trigeminal Ganglia of Latently Infected Mice. Journal of Virology, 2016, 90, 9533-9542.	1.5	19
64	Optic Neuritis in Different Strains of Mice by a Recombinant HSV-1 Expressing Murine Interleukin-2. , 2009, 50, 3275.		18
65	Adaptive and Innate Transforming Growth Factor Î ² Signaling Impact Herpes Simplex Virus 1 Latency and Reactivation. Journal of Virology, 2011, 85, 11448-11456.	1.5	18
66	Batf3 deficiency is not critical for the generation of CD8α+ dendritic cells. Immunobiology, 2015, 220, 518-524.	0.8	18
67	Overexpression of Herpes Simplex Virus Glycoprotein K (gK) Alters Expression of HSV Receptors in Ocularly-Infected Mice. , 2014, 55, 2442.		17
68	Coregulatory Interactions among CD8α Dendritic Cells, the Latency-Associated Transcript, and Programmed Death 1 Contribute to Higher Levels of Herpes Simplex Virus 1 Latency. Journal of Virology, 2014, 88, 6599-6610.	1.5	17
69	Binding of Herpes Simplex Virus 1 UL20 to GODZ (DHHC3) Affects Its Palmitoylation and Is Essential for Infectivity and Proper Targeting and Localization of UL20 and Glycoprotein K. Journal of Virology, 2017, 91, .	1.5	17
70	Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathogens, 2021, 17, e1009999.	2.1	16
71	Specific and Nonspecific Immune Stimulation of MHC-II-Deficient Mice Results in Chronic HSV-1 Infection of the Trigeminal Ganglia Following Ocular Challenge. Virology, 1999, 258, 208-216.	1.1	15
72	Antibody-dependent enhancement of HSV-1 infection by anti-gK sera. Virus Research, 2000, 68, 137-144.	1.1	15

#	Article	IF	CITATIONS
73	Macrophage IL-12p70 Signaling Prevents HSV-1–Induced CNS Autoimmunity Triggered by Autoaggressive CD4+Tregs. , 2011, 52, 2321.		15
74	Role of Interleukin-2 and Herpes Simplex Virus 1 in Central Nervous System Demyelination in Mice. Journal of Virology, 2013, 87, 12102-12109.	1.5	15
75	Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity inÂvitro and inÂvivo. Experimental Eye Research, 2014, 123, 8-15.	1.2	14
76	CCR2+ migratory macrophages with M1 status are the early-responders in the cornea of HSV-1 infected mice. PLoS ONE, 2019, 14, e0215727.	1.1	14
77	Roles of Type 1, 2, and 3 Innate Lymphoid Cells in Herpes Simplex Virus 1 Infection <i>In Vitro</i> and <i>In Vivo</i> . Journal of Virology, 2019, 93, .	1.5	14
78	Type 2 Innate Lymphoid Cells Induce CNS Demyelination in an HSV-IL-2 Mouse Model of Multiple Sclerosis. IScience, 2020, 23, 101549.	1.9	14
79	The Absence of DHHC3 Affects Primary and Latent Herpes Simplex Virus 1 Infection. Journal of Virology, 2018, 92, .	1.5	13
80	Expression of Murine CD80 by Herpes Simplex Virus 1 in Place of Latency-Associated Transcript (LAT) Can Compensate for Latency Reactivation and Anti-apoptotic Functions of LAT. Journal of Virology, 2020, 94, .	1.5	13
81	Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice. PLoS Pathogens, 2017, 13, e1006401.	2.1	13
82	CD80 Plays a Critical Role in Increased Inflammatory Responses in Herpes Simplex Virus 1-Infected Mouse Corneas. Journal of Virology, 2020, 94, .	1.5	12
83	Herpes Simplex Virus Type 1 Serum Neutralizing Antibody Titers Increase during Latency in Rabbits Latently Infected with Latency-Associated Transcript (LAT)-Positive but Not LAT-Negative Viruses. Journal of Virology, 1999, 73, 9669-9672.	1.5	12
84	IL-2 Suppression of IL-12p70 by a Recombinant HSV-1 Expressing IL-2 Induces T-Cell Auto-Reactivity and CNS Demyelination. PLoS ONE, 2011, 6, e16820.	1.1	12
85	The Absence of Lymphotoxin-α, a Herpesvirus Entry Mediator (HVEM) Ligand, Affects Herpes Simplex Virus 1 Infection In Vivo Differently than the Absence of Other HVEM Cellular Ligands. Journal of Virology, 2019, 93, .	1.5	11
86	Absence of Signal Peptide Peptidase, an Essential Herpes Simplex Virus 1 Glycoprotein K Binding Partner, Reduces Virus Infectivity <i>In Vivo</i> . Journal of Virology, 2019, 93, .	1.5	11
87	Mutations within the Pathogenic Region of Herpes Simplex Virus 1 gK Signal Sequences Alter Cell Surface Expression and Neurovirulence. Journal of Virology, 2015, 89, 2530-2542.	1.5	10
88	Restoring Herpesvirus Entry Mediator (HVEM) Immune Function in HVEM ^{â^'/â^'} Mice Rescues Herpes Simplex Virus 1 Latency and Reactivation Independently of Binding to Glycoprotein D. Journal of Virology, 2020, 94, .	1.5	10
89	An M2 Rather than a T H 2 Response Contributes to Better Protection against Latency Reactivation following Ocular Infection of Naive Mice with a Recombinant Herpes Simplex Virus 1 Expressing Murine Interleukin-4. Journal of Virology, 2018, 92, .	1.5	8
90	Treatment of Mice with Anti-CD86 mAb Reduces CD8+T Cell-Mediated CTL Activity and Enhances Ocular Viral Replication in HSV-1-Infected Mice. Ocular Immunology and Inflammation, 2005, 13, 159-167.	1.0	7

HOMAYON GHIASI

#	Article	IF	CITATIONS
91	Suppression of CD80 Expression by ICP22 Affects Herpes Simplex Virus Type 1 Replication and CD8 ⁺ IFN-Î3 ⁺ Infiltrates in the Eyes of Infected Mice but Not Latency Reactivation. Journal of Virology, 2021, 95, e0103621.	1.5	7
92	Herpes Simplex Virus 1 Small Noncoding RNAs 1 and 2 Activate the Herpesvirus Entry Mediator Promoter. Journal of Virology, 2022, 96, JVI0198521.	1.5	7
93	Enhanced Clearance of Herpes Simplex Virus Type 1 and Reduced Herpetic Eye Disease in STAT6 Knockout Mice Is Associated with Increased IL-2. Virology, 2002, 302, 286-293.	1.1	5
94	Involvement of STAT4 in IgG subtype switching and ocular HSV-1 replication in mice. Molecular Vision, 2010, 16, 98-104.	1.1	5
95	Ocular infection of mice with an avirulent recombinant HSV-1 expressing IL-4 and an attenuated HSV-1 strain generates virulent recombinants in vivo. Molecular Vision, 2010, 16, 2153-62.	1.1	5
96	Role of TH17 Responses in Increasing Herpetic Keratitis in the Eyes of Mice Infected with HSV-1. , 2020, 61, 20.		4
97	Absence of signal peptide peptidase in peripheral sensory neurons affects latency-reactivation in HSV-1 ocularly infected mice. PLoS Pathogens, 2022, 18, e1010281.	2.1	4
98	Small Noncoding RNA (sncRNA1) within the Latency-Associated Transcript Modulates Herpes Simplex Virus 1 Virulence and the Host Immune Response during Acute but Not Latent Infection. Journal of Virology, 2022, 96, e0005422.	1.5	3
99	Blocking HSV-1 glycoprotein K binding to signal peptide peptidase reduces virus infectivity in vitro and in vivo. PLoS Pathogens, 2021, 17, e1009848.	2.1	2
100	Absence of CD28-CTLA4-PD-L1 Costimulatory Molecules Reduces Herpes Simplex Virus 1 Reactivation. MBio, 2021, 12, e0117621.	1.8	2
101	Remembrance of Professor Steven Wechsler (1948–2016). Journal of NeuroVirology, 2016, 22, 553-554.	1.0	1
102	Protocol for a mouse CNS demyelination model induced by a combination of HSV-1 and IL-2. STAR Protocols, 2021, 2, 100287.	0.5	1
103	Impact of a Demyelination-Inducing Central Nervous System Virus on Expression of Demyelination Genes in Type 2 Lymphoid Cells. Journal of Virology, 2021, 95, .	1.5	1
104	Remembrance of Professor James Milton Hill (1942–2013). Current Eye Research, 2014, 39, 103-103.	0.7	0
105	Reply to "Herpes Simplex Virus 1, Macrophages, and the Cornea― Journal of Virology, 2017, 91, .	1.5	0
106	Highly Efficacious Novel Vaccine, Humoral Immunity, and Ocular Herpes Simplex Virus 1: Reality or Myth?. Journal of Virology, 2017, 91, .	1.5	0
107	Title is missing!. , 2020, 16, e1008971.		0

#	Article	IF	CITATIONS
109	Title is missing!. , 2020, 16, e1008971.		0
110	Title is missing!. , 2020, 16, e1008971.		0

Title is missing!. , 2020, 16, e1008971. 110