Marco S Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8756166/publications.pdf Version: 2024-02-01

MARCO S RODRICHES

#	Article	IF	CITATIONS
1	Plasmonic Strain Sensors Based on Au-TiO2 Thin Films on Flexible Substrates. Sensors, 2022, 22, 1375.	3.8	3
2	Immobilization of Streptavidin on a Plasmonic Au-TiO2 Thin Film towards an LSPR Biosensing Platform. Nanomaterials, 2022, 12, 1526.	4.1	6
3	Carbon Monoxide (CO) Sensor Based on Au Nanoparticles Embedded in a CuO Matrix by HR-LSPR Spectroscopy at Room Temperature. , 2021, 5, 1-3.		9
4	Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies. Applied Sciences (Switzerland), 2021, 11, 5388.	2.5	29
5	In-situ annealing transmission electron microscopy of plasmonic thin films composed of bimetallic Au–Ag nanoparticles dispersed in a TiO2 matrix. Vacuum, 2021, 193, 110511.	3.5	8
6	Me-Doped Ti–Me Intermetallic Thin Films Used for Dry Biopotential Electrodes: A Comparative Case Study. Sensors, 2021, 21, 8143.	3.8	5
7	Thin films of Au-Al2O3 for plasmonic sensing. Applied Surface Science, 2020, 500, 144035.	6.1	13
8	Dry Electrodes for Surface Electromyography Based on Architectured Titanium Thin Films. Materials, 2020, 13, 2135.	2.9	26
9	NANOPTICS: In-depth analysis of NANomaterials for OPTICal localized surface plasmon resonance Sensing. SoftwareX, 2020, 12, 100522.	2.6	13
10	Preparation of Plasmonic Au-TiO2 Thin Films on a Transparent Polymer Substrate. Coatings, 2020, 10, 227.	2.6	3
11	Optimization of Au:CuO Nanocomposite Thin Films for Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy. Analytical Chemistry, 2020, 92, 4349-4356.	6.5	22
12	Nanocomposite Au-ZnO thin films: Influence of gold concentration and thermal annealing on the microstructure and plasmonic response. Surface and Coatings Technology, 2020, 385, 125379.	4.8	8
13	Enhancing the Sensitivity of Nanoplasmonic Thin Films for Ethanol Vapor Detection. Materials, 2020, 13, 870.	2.9	6
14	Antifungal activity of ZnO thin films prepared by glancing angle deposition. Thin Solid Films, 2019, 687, 137461.	1.8	14
15	Development of biocompatible plasmonic thin films composed of noble metal nanoparticles embedded in a dielectric matrix to enhance Raman signals. Applied Surface Science, 2019, 496, 143701.	6.1	8
16	Gas Sensing with Nanoplasmonic Thin Films Composed of Nanoparticles (Au, Ag) Dispersed in a CuO Matrix. Coatings, 2019, 9, 337.	2.6	15
17	Thin films composed of metal nanoparticles (Au, Ag, Cu) dispersed in AlN: The influence of composition and thermal annealing on the structure and plasmonic response. Thin Solid Films, 2019, 676, 12-25.	1.8	20
18	Development of label-free plasmonic Au-TiO2 thin film immunosensor devices. Materials Science and Engineering C, 2019, 100, 424-432.	7.3	27

MARCO S RODRIGUES

#	Article	IF	CITATIONS
19	Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensing. Applied Surface Science, 2019, 484, 152-168.	6.1	29
20	Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment. Polymer, 2019, 169, 138-147.	3.8	51
21	Nanoplasmonic response of porous Au-TiO ₂ thin films prepared by oblique angle deposition. Nanotechnology, 2019, 30, 225701.	2.6	33
22	Fracture resistance of Ti-Ag thin films deposited on polymeric substrates for biosignal acquisition applications. Surface and Coatings Technology, 2019, 358, 646-653.	4.8	10
23	Effect of microstructural changes in the biological behavior of magnetron sputtered ZnO thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	6
24	Thin films of Ag–Au nanoparticles dispersed in TiO ₂ : influence of composition and microstructure on the LSPR and SERS responses. Journal Physics D: Applied Physics, 2018, 51, 205102.	2.8	30
25	Electron Tomography of Plasmonic Au Nanoparticles Dispersed in a TiO ₂ Dielectric Matrix. ACS Applied Materials & Interfaces, 2018, 10, 42882-42890.	8.0	20
26	Thin films composed of Au nanoparticles embedded in AlN: Influence of metal concentration and thermal annealing on the LSPR band. Vacuum, 2018, 157, 414-421.	3.5	24
27	Properties of CrN thin films deposited in plasma-activated ABS by reactive magnetron sputtering. Surface and Coatings Technology, 2018, 349, 858-866.	4.8	11
28	Evolution of the functional properties of titanium–silver thin films for biomedical applications: Influence of in-vacuum annealing. Surface and Coatings Technology, 2015, 261, 262-271.	4.8	19
29	Modulated IR radiometry for determining thermal properties and basic characteristics of titanium thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 041511.	2.1	8
30	Effect of clustering on the surface plasmon band in thin films of metallic nanoparticles. Journal of Nanophotonics, 2014, 9, 093796.	1.0	9
31	Process monitoring during AlNxOy deposition by reactive magnetron sputtering and correlation with the film's properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 021307.	2.1	7