Andrew G Polson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8755492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibody-Drug Conjugates for the Treatment of Non–Hodgkin's Lymphoma: Target and Linker-Drug Selection. Cancer Research, 2009, 69, 2358-2364.	0.4	229
2	Therapeutic potential of an anti-CD79b antibody–drug conjugate, anti–CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood, 2009, 114, 2721-2729.	0.6	205
3	An anti-CD3/anti–CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood, 2017, 129, 609-618.	0.6	136
4	Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood, 2007, 110, 616-623.	0.6	135
5	Antitumor Efficacy of a Bispecific Antibody That Targets HER2 and Activates T Cells. Cancer Research, 2014, 74, 5561-5571.	0.4	135
6	Targeting LGR5 ⁺ cells with an antibody-drug conjugate for the treatment of colon cancer. Science Translational Medicine, 2015, 7, 314ra186.	5.8	131
7	A Novel Anti-CD22 Anthracycline-Based Antibody–Drug Conjugate (ADC) That Overcomes Resistance to Auristatin-Based ADCs. Clinical Cancer Research, 2015, 21, 3298-3306.	3.2	124
8	Expression pattern of the human FcRH/IRTA receptors in normal tissue and in B-chronic lymphocytic leukemia. International Immunology, 2006, 18, 1363-1373.	1.8	100
9	Cathepsin B Is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody–Drug Conjugates. Cancer Research, 2017, 77, 7027-7037.	0.4	99
10	DCDT2980S, an Anti-CD22-Monomethyl Auristatin E Antibody–Drug Conjugate, Is a Potential Treatment for Non-Hodgkin Lymphoma. Molecular Cancer Therapeutics, 2013, 12, 1255-1265.	1.9	72
11	Investigational antibody-drug conjugates for hematological malignancies. Expert Opinion on Investigational Drugs, 2011, 20, 75-85.	1.9	64
12	FcRL5 as a Target of Antibody–Drug Conjugates for the Treatment of Multiple Myeloma. Molecular Cancer Therapeutics, 2012, 11, 2222-2232.	1.9	63
13	An Anti–CLL-1 Antibody–Drug Conjugate for the Treatment of Acute Myeloid Leukemia. Clinical Cancer Research, 2019, 25, 1358-1368.	3.2	53
14	<i>In vivo</i> effects of targeting CD79b with antibodies and antibody-drug conjugates. Molecular Cancer Therapeutics, 2009, 8, 2937-2946.	1.9	45
15	The successes and limitations of preclinical studies in predicting the pharmacodynamics and safety of cellâ€surfaceâ€targeted biological agents in patients. British Journal of Pharmacology, 2012, 166, 1600-1602.	2.7	37
16	Phase I study of the anti-FcRH5 antibody-drug conjugate DFRF4539A in relapsed or refractory multiple myeloma. Blood Cancer Journal, 2019, 9, 17.	2.8	35
17	Intratumoral Payload Concentration Correlates with the Activity of Antibody–Drug Conjugates. Molecular Cancer Therapeutics, 2018, 17, 677-685.	1.9	30
18	Antibody–drug conjugates for the treatment of B-cell non-Hodgkin's lymphoma and leukemia. Future Oncology, 2013, 9, 355-368.	1.1	27

ANDREW G POLSON

#	Article	IF	CITATIONS
19	Antibody Drug Conjugates Differentiate Uptake and DNA Alkylation of Pyrrolobenzodiazepines in Tumors from Organs of Xenograft Mice. Drug Metabolism and Disposition, 2016, 44, 1958-1962.	1.7	23
20	A homogeneous high-DAR antibody–drug conjugate platform combining THIOMAB antibodies and XTEN polypeptides. Chemical Science, 2022, 13, 3147-3160.	3.7	23
21	Anti D22 and anti D79b antibodyâ€drug conjugates preferentially target proliferating B cells. British Journal of Pharmacology, 2017, 174, 628-640.	2.7	22
22	Exposure-Efficacy Analysis of Antibody-Drug Conjugates Delivering an Excessive Level of Payload to Tissues. Drug Metabolism and Disposition, 2019, 47, 1146-1155.	1.7	20
23	Stabilizing a Tubulysin Antibody–Drug Conjugate To Enable Activity Against Multidrug-Resistant Tumors. ACS Medicinal Chemistry Letters, 2017, 8, 1037-1041.	1.3	19
24	Evaluation and use of an anti ynomolgus monkey CD79b surrogate antibody–drug conjugate to enable clinical development of polatuzumab vedotin. British Journal of Pharmacology, 2019, 176, 3805-3818.	2.7	18
25	A BCMA/CD16A bispecific innate cell engager for the treatment of multiple myeloma. Leukemia, 2022, 36, 1006-1014.	3.3	17
26	Antibody–Drug Conjugates Derived from Cytotoxic seco-CBI-Dimer Payloads Are Highly Efficacious in Xenograft Models and Form Protein Adducts In Vivo. Bioconjugate Chemistry, 2019, 30, 1356-1370.	1.8	15
27	Preclinical pharmacokinetics and pharmacodynamics of DCLL9718A: An antibody-drug conjugate for the treatment of acute myeloid leukemia. MAbs, 2018, 10, 1312-1321.	2.6	13
28	Toward an Effective Targeted Chemotherapy for Multiple Myeloma. Clinical Cancer Research, 2009, 15, 3906-3907.	3.2	11
29	An Anti–CD22- <i>seco</i> -CBI-Dimer Antibody–Drug Conjugate (ADC) for the Treatment of Non-Hodgkin Lymphoma That Provides a Longer Duration of Response than Auristatin-Based ADCs in Preclinical Models. Molecular Cancer Therapeutics, 2021, 20, 340-346.	1.9	9
30	Novel Anti-LY6G6D/CD3 T-Cell–Dependent Bispecific Antibody for the Treatment of Colorectal Cancer. Molecular Cancer Therapeutics, 2022, 21, 974-985.	1.9	5
31	Antibody–Drug Conjugates for the Treatment of B-Cell Malignancies. , 2013, , 139-147.		0
32	Antibody-Drug Conjugates Targeted to CD79 for the Treatment of Non-Hodgkin's Lymphoma Blood, 2006, 108, 2524-2524.	0.6	0