
Jan HostaÅja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8755003/publications.pdf Version: 2024-02-01

ΙΔΝ ΗΟςτΑΔιλ

#	Article	IF	CITATIONS
1	Magnesium fluoride (MgF2) – A novel sintering additive for the preparation of transparent YAG ceramics via SPS. Journal of the European Ceramic Society, 2022, 42, 3290-3296.	5.7	11
2	Tribological behaviour of transparent ceramics: A review. Journal of the European Ceramic Society, 2022, 42, 6303-6334.	5.7	7
3	Sintering aids, their role and behaviour in the production of transparent ceramics. Open Ceramics, 2021, 7, 100137.	2.0	14
4	Ceramics for Laser Technologies. , 2021, , 110-124.		0
5	Fabrication and laser performances of Yb:Sc2O3 transparent ceramics from different combination of vacuum sintering and hot isostatic pressing conditions. Journal of the European Ceramic Society, 2020, 40, 881-886.	5.7	13
6	Transparent laser ceramics by stereolithography. Scripta Materialia, 2020, 187, 194-196.	5.2	31
7	Fabrication and luminescence of Ce-doped GGAG transparent ceramics, effect of sintering parameters and additives. Ceramics International, 2019, 45, 23283-23288.	4.8	15
8	Advances in the monitoring of the SiO2 evaporation loss in transparent YAG ceramics by LIBS. Ceramics International, 2019, 45, 12274-12278.	4.8	5
9	Neutron/Î ³ discrimination by an emission-based phoswich approach. Radiation Measurements, 2019, 129, 106203.	1.4	10
10	Effect of rare earth ions doping on the thermal properties of YAG transparent ceramics. Journal of the European Ceramic Society, 2019, 39, 53-58.	5.7	38
11	Ag and AgCu as brazing materials for Ti6Al4V-Y3Al5O12 joints: Does ennoblement affect the galvanic behaviour in seawater?. Electrochimica Acta, 2018, 283, 155-166.	5.2	9
12	Design and characterization of Yb and Nd doped transparent ceramics for high power laser applications: recent advancements. , 2017, , .		1
13	Transparent layered YAG ceramics with structured Yb doping produced via tape casting. Optical Materials, 2017, 65, 21-27.	3.6	20
14	Quantification of SiO_2 sintering additive in YAG transparent ceramics by laser-induced breakdown spectroscopy (LIBS). Optical Materials Express, 2017, 7, 1666.	3.0	10
15	Layered Yb:YAG ceramics produced by two different methods: processing, characterization and comparison. , 2016, , .		1
16	Laser and optical properties of Yb:YAG ceramics with layered doping distribution: design, characterization and evaluation of different production processes. Proceedings of SPIE, 2016, , .	0.8	3
17	Stereology of dense polycrystalline materials—from interface density and mean curvature integral density to Rayleigh distributions of grain sizes. Journal of the European Ceramic Society, 2016, 36, 2319-2328.	5.7	12
18	Layered Yb:YAG ceramics produced by two different methods: processing, characterization, and comparison. Optical Engineering, 2016, 55, 087104.	1.0	7

Jan HostaÅia

#	Article	IF	CITATIONS
19	Densification and phase transition of Yb-doped Lu2O3 nanoparticles synthesized by laser ablation. Materials Letters, 2016, 185, 396-398.	2.6	8
20	Graded Yb:YAG ceramic structures: design, fabrication and characterization of the laser performances. , 2015, , .		0
21	Quantitative microstructural characterization of transparent YAG ceramics via microscopic image analysis using stereological relations. , 2015, , .		0
22	3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment. Optics Express, 2014, 22, 5375.	3.4	29
23	Polycrystalline Yb ³⁺ –Er ³⁺ -co-doped YAG: Fabrication, TEM-EDX characterization, spectroscopic properties, and comparison with the single crystal. Journal of Materials Research, 2014, 29, 2288-2296.	2.6	9
24	Porosity and pore size dependence of the real in-line transmission of YAG and alumina ceramics. Journal of the European Ceramic Society, 2014, 34, 2745-2756.	5.7	41
25	Multilayered YAG-Yb:YAG ceramics: manufacture and laser performance. Journal of Materials Chemistry C, 2014, 2, 10138-10148.	5.5	33
26	Thermal Properties of Transparent Ybâ€Doped <scp>YAG</scp> Ceramics at Elevated Temperatures. Journal of the American Ceramic Society, 2014, 97, 2602-2606.	3.8	20
27	Thermal lens measurements in Yb-doped YAG, LuAG, Lu ₂ O ₃ , Sc ₂ O ₃ ceramic lasers. Journal of Physics: Conference Series, 2014, 497, 012013.	0.4	3
28	Characterization of Yb:YAG active slab media based on a layered structure with different doping. , 2013, , .		3
29	Synthesis and optical spectroscopy of transparent YAG ceramics activated with Er3+. Journal of the European Ceramic Society, 2013, 33, 1425-1434.	5.7	45
30	Preparation and characterization of Yb-doped YAG ceramics. Optical Materials, 2013, 35, 798-803.	3.6	31
31	Laser-plasma acceleration and radiation sources for applications. , 2013, , .		0
32	Transparent Yb:YAG Ceramics, Layered <i>In Situ</i> Composites. Advanced Science, Engineering and Medicine, 2013, 5, 557-560.	0.3	1
33	Elastic properties and damping behavior of alumina–zirconia composites at room temperature. Ceramics International, 2012, 38, 5931-5939.	4.8	29
34	Slip Casting of a <scp><scp>Si</scp>₃<scp>N</scp>₄</scp> â€Based System. International Journal of Applied Ceramic Technology, 2012, 9, 246-258.	2.1	3
35	Influence of Yb and Si content on the sintering and phase changes of Yb:YAG laser ceramics. Journal of the European Ceramic Society, 2012, 32, 2949-2956.	5.7	20
36	Efficient Laser Action in Yb:YAG Ceramic Structures Obtained by Reactive Sintering Method. , 2012, , .		0

Jan HostaÅia

#	Article	IF	CITATIONS
37	Thermal Conductivity of <scp><scp>Al₂O₃–ZrO₂</scp></scp> Composite Ceramics. Journal of the American Ceramic Society, 2011, 94, 4404-4409.	3.8	33
38	Thermal Conductivity of Ceramic Nanocomposites – The Phase Mixture Modeling Approach. Advances in Science and Technology, 2010, 71, 68-73.	0.2	1
39	Phase Mixture Models for the Thermal Conductivity of Nanofluids and Nanocrystalline Solids. , 2009, , .		4