Alexander N Gelfan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 2013, 58, 1198-1255.	1.2	821
2	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	1.2	474
3	Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 2009, 114, .	3.3	290
4	Modeling Forest Cover Influences on Snow Accumulation, Sublimation, and Melt. Journal of Hydrometeorology, 2004, 5, 785-803.	0.7	155
5	How the performance of hydrological models relates to credibility of projections under climate change. Hydrological Sciences Journal, 2018, 63, 696-720.	1.2	133
6	Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis. Environmental Research Letters, 2017, 12, 105002.	2.2	109
7	Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 2014, 18, 649-671.	1.9	83
8	Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues. Climatic Change, 2017, 141, 499-515.	1.7	77
9	Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Climatic Change, 2017, 141, 381-397.	1.7	76
10	The determination of the snowmelt rate and the meltwater outflow from a snowpack for modelling river runoff generation. Journal of Hydrology, 1996, 179, 23-36.	2.3	59
11	A distributed model of runoff generation in the permafrost regions. Journal of Hydrology, 2000, 240, 1-22.	2.3	56
12	Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 0, , 1-18.	1.2	53
13	Modelling the hydrological impacts of rural land use change. Hydrology Research, 2014, 45, 737-754.	1.1	44
14	Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation. Hydrology and Earth System Sciences, 2010, 14, 339-350.	1.9	33
15	Disastrous flood of 2013 in the Amur basin: Genesis, recurrence assessment, simulation results. Water Resources, 2014, 41, 115-125.	0.3	29
16	Large-basin hydrological response to climate model outputs: uncertainty caused by internal atmospheric variability. Hydrology and Earth System Sciences, 2015, 19, 2737-2754.	1.9	28
17	Testing the robustness of the physically-based ECOMAG model with respect to changing conditions. Hydrological Sciences Journal, 2015, 60, 1266-1285.	1.2	27
18	Does a successful comprehensive evaluation increase confidence in a hydrological model intended for climate impact assessment?. Climatic Change, 2020, 163, 1165-1185.	1.7	24

Alexander N Gelfan

#	Article	IF	CITATIONS
19	Validation of a Hydrological Model Intended for Impact Study: Problem Statement and Solution Example for Selenga River Basin. Water Resources, 2018, 45, 90-101.	0.3	21
20	Statistical self-similarity of spatial variations of snow cover: verification of the hypothesis and application in the snowmelt runoff generation models. Hydrological Processes, 2001, 15, 3343-3355.	1.1	19
21	Longâ€ŧerm Hydrological Forecasting in Cold Regions: Retrospect, Current Status and Prospect. Geography Compass, 2009, 3, 1841-1864.	1.5	17
22	Estimation of Extreme Flood Characteristics Using Physically Based Models of Runoff Generation and Stochastic Meteorological Inputs. Water International, 2002, 27, 77-86.	0.4	11
23	Extreme snowmelt floods: Frequency assessment and analysis of genesis on the basis of the dynamic-stochastic approach. Journal of Hydrology, 2010, 388, 85-99.	2.3	11
24	The Integrated System of Hydrological Forecasting in the Ussuri River Basin Based on the ECOMAG Model. Geosciences (Switzerland), 2018, 8, 5.	1.0	11
25	Assessing Amur Water Regime Variations in the XXI Century with Two Methods Used to Specify Climate Projections in River Runoff Formation Model. Water Resources, 2018, 45, 307-317.	0.3	11
26	Assessment of extreme flood characteristics based on a dynamicâ€stochastic model of runoff generation and the probable maximum discharge. Journal of Flood Risk Management, 2011, 4, 115-127.	1.6	10
27	Dynamic-stochastic models of rainfall and snowmelt runoff formation. Hydrological Sciences Journal, 1991, 36, 153-169.	1.2	7
28	Hydrometeorology and Hydroclimate. Advances in Meteorology, 2016, 2016, 1-4.	0.6	7
29	A study of effectiveness of the ensemble long-term forecasts of spring floods issued with physically based models of the river runoff formation. Russian Meteorology and Hydrology, 2009, 34, 100-109.	0.2	6
30	Recursive System Identification for Real-Time Sewer Flow Forecasting. Journal of Hydrologic Engineering - ASCE, 1999, 4, 280-287.	0.8	4
31	Long-term ensemble forecast of snowmelt inflow into the Cheboksary Reservoir under two different weather scenarios. Hydrology and Earth System Sciences, 2018, 22, 2073-2089.	1.9	4
32	A spatial model of snowmelt-rainfall runoff formation of the mountain river (by the example of the) Tj ETQq0 0 0	rgBT_/Ove	rlogk 10 Tf 50

33	A model for the hydrological cycle of a forested catchment and assessment of the changes caused in water balance by cuttings. Contemporary Problems of Ecology, 2013, 6, 770-778.	0.3	1
34	The joint use of deterministic and probabilistic approaches to the computation of maximum runoff characteristics. Russian Meteorology and Hydrology, 2010, 35, 411-420.	0.2	0