Thomas E Dick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pontine Mechanisms of Respiratory Control. , 2012, 2, 2443-2469.		205
2	Modeling the ponto-medullary respiratory network. Respiratory Physiology and Neurobiology, 2004, 143, 307-319.	0.7	139
3	Cardiorespiratory Coupling. Progress in Brain Research, 2014, 209, 191-205.	0.9	132
4	CARDIOVASCULAR ALTERATIONS BY CHRONIC INTERMITTENT HYPOXIA: IMPORTANCE OF CAROTID BODY CHEMOREFLEXES. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 447-449.	0.9	131
5	Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Experimental Physiology, 2007, 92, 87-97.	0.9	121
6	Pontine respiratory neurons in anesthetized cats. Brain Research, 1994, 636, 259-269.	1.1	106
7	Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Experimental Physiology, 2007, 92, 39-44.	0.9	89
8	Ventrolateral pons mediates short-term depression of respiratory frequency after brief hypoxia. Respiration Physiology, 2000, 121, 87-100.	2.8	83
9	Effect of baroreceptor stimulation on the respiratory pattern: Insights into respiratory–sympathetic interactions. Respiratory Physiology and Neurobiology, 2010, 174, 135-145.	0.7	80
10	Functional Connectivity in the Pontomedullary Respiratory Network. Journal of Neurophysiology, 2008, 100, 1749-1769.	0.9	74
11	Learning to breathe: control of the inspiratory–expiratory phase transition shifts from sensory―to centralâ€dominated during postnatal development in rats. Journal of Physiology, 2009, 587, 4931-4948.	1.3	74
12	Pontomedullary transection attenuates central respiratory modulation of sympathetic discharge, heart rate and the baroreceptor reflex in the <i>in situ</i> rat preparation. Experimental Physiology, 2008, 93, 803-816.	0.9	71
13	Entrainment pattern between sympathetic and phrenic nerve activities in the Sprague-Dawley rat: hypoxia-evoked sympathetic activity during expiration. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R1121-R1128.	0.9	63
14	Prolongation in expiration evoked from ventrolateral pons of adult rats. Journal of Applied Physiology, 1997, 82, 377-381.	1.2	62
15	A method for analyzing temporal patterns of variability of a time series from Poincaré plots. Journal of Applied Physiology, 2012, 113, 297-306.	1.2	58
16	Cardio-respiratory coupling depends on the pons. Respiratory Physiology and Neurobiology, 2009, 168, 76-85.	0.7	48
17	Control of breathing by interacting pontine and pulmonary feedback loops. Frontiers in Neural Circuits, 2013, 7, 16.	1.4	47
18	Increased cardio-respiratory coupling evoked by slow deep breathing can persist in normal humans. Respiratory Physiology and Neurobiology, 2014, 204, 99-111.	0.7	45

Тномаѕ Е Dick

#	Article	IF	CITATIONS
19	Increasing Local Excitability of Brainstem Respiratory Nuclei Reveals a Distributed Network Underlying Respiratory Motor Pattern Formation. Frontiers in Physiology, 2019, 10, 887.	1.3	41
20	Quantitative analysis of cardiovascular modulation in respiratory neural activity. Journal of Physiology, 2004, 556, 959-970.	1.3	40
21	Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling. Frontiers in Physiology, 2012, 3, 222.	1.3	39
22	Lung and brainstem cytokine levels are associated with breathing pattern changes in a rodent model of acute lung injury. Respiratory Physiology and Neurobiology, 2011, 178, 429-438.	0.7	38
23	Pontine respiratoryâ€modulated activity before and after vagotomy in decerebrate cats. Journal of Physiology, 2008, 586, 4265-4282.	1.3	37
24	Diaphragm activation via high frequency spinal cord stimulation in a rodent model of spinal cord injury. Experimental Neurology, 2013, 247, 689-693.	2.0	36
25	Kölliker-Fuse nuclei regulate respiratory rhythm variability via a gain-control mechanism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R172-R188.	0.9	34
26	Effects of baroreceptor activation on respiratory variability in rat. Respiratory Physiology and Neurobiology, 2009, 166, 80-86.	0.7	32
27	Volumetric mapping of the functional neuroanatomy of the respiratory network in the perfused brainstem preparation of rats. Journal of Physiology, 2020, 598, 2061-2079.	1.3	32
28	Pontine–Ventral Respiratory Column Interactions Through Raphé Circuits Detected Using Multi-Array Spike Train Recordings. Journal of Neurophysiology, 2009, 101, 2943-2960.	0.9	29
29	Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system. Progress in Brain Research, 2014, 212, 1-23.	0.9	29
30	Arterial pulse modulated activity is expressed in respiratory neural output. Journal of Applied Physiology, 2005, 99, 691-698.	1.2	27
31	Learning to breathe: Habituation of Hering–Breuer inflation reflex emerges with postnatal brainstem maturation. Respiratory Physiology and Neurobiology, 2014, 195, 44-49.	0.7	26
32	Brainstem inflammation modulates the ventilatory pattern and its variability after acute lung injury in rodents. Journal of Physiology, 2020, 598, 2791-2811.	1.3	26
33	Quantifying interactions between real oscillators with information theory and phase models: Application to cardiorespiratory coupling. Physical Review E, 2013, 87, 022709.	0.8	21
34	Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice. Respiratory Physiology and Neurobiology, 2016, 226, 110-114.	0.7	21
35	Respiratory Responses to Tracheobronchial Stimulation During Sleep and Wakefulness in the Adult Cat. Sleep, 1996, 19, 472-478.	0.6	20
36	A role for NMDA receptors in posthypoxic frequency decline in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1546-R1555.	0.9	17

Тномая Е Dick

#	Article	IF	CITATIONS
37	Cardio-ventilatory coupling in young healthy resting subjects. Journal of Applied Physiology, 2012, 112, 1248-1257.	1.2	17
38	Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability. Journal of Neurophysiology, 2017, 117, 230-242.	0.9	17
39	Swallowing in Sleep and Wakefulness in Adult Cats. Sleep, 1995, 18, 325-329.	0.6	15
40	Decreased Hering–Breuer Input-Output Entrainment in a Mouse Model of Rett Syndrome. Frontiers in Neural Circuits, 2013, 7, 42.	1.4	14
41	Functional connectivity in raphé-pontomedullary circuits supports active suppression of breathing during hypocapnic apnea. Journal of Neurophysiology, 2015, 114, 2162-2186.	0.9	14
42	Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain, Behavior, and Immunity, 2018, 70, 398-422.	2.0	14
43	Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain, Behavior, and Immunity, 2020, 87, 610-633.	2.0	14
44	Traube–Hering waves are formed by interaction of respiratory sinus arrhythmia and pulse pressure modulation in healthy men. Journal of Applied Physiology, 2020, 129, 1193-1202.	1.2	12
45	Pontine GABAergic pathways: role and plasticity in the hypoxic ventilatory response. Respiratory Physiology and Neurobiology, 2004, 143, 141-153.	0.7	10
46	Variability, measuring the spice of life. Journal of Applied Physiology, 2011, 111, 351-352.	1.2	10
47	Adaptation to hypobaric hypoxia involves GABAA receptors in the pons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R549-R557.	0.9	9
48	Ventilatory pattern variability as a biometric for severity of acute lung injury in rats. Respiratory Physiology and Neurobiology, 2019, 265, 161-171.	0.7	9
49	Heartbeats entrain breathing via baroreceptorâ€mediated modulation of expiratory activity. Experimental Physiology, 2021, 106, 1181-1195.	0.9	9
50	C57BL/6J mouse apolipoprotein A2 gene is deterministic for apnea. Respiratory Physiology and Neurobiology, 2017, 235, 88-94.	0.7	8
51	Respiratory modulation of sympathetic activity is attenuated in adult rats conditioned with chronic hypobaric hypoxia. Respiratory Physiology and Neurobiology, 2015, 206, 53-60.	0.7	6
52	L-plotting—A method for visual analysis of physiological experimental and modeling multi-component data. Neurocomputing, 2010, 74, 328-336.	3.5	4
53	Recurrent Connections between the Pontine Respiratory Group and Ventrolateral Medullary Respiratory Column through Parallel Functional Pathways. FASEB Journal, 2006, 20, A370.	0.2	3
54	Response to: The postâ€inspiratory complex (PiCo), what is the evidence?. Journal of Physiology, 2021, 599, 361-362.	1.3	2

Тномаѕ Е Dick

#	Article	IF	CITATIONS
55	Intrinsic Circuits of the Pontine Respiratory Group Inferred from Correlational Analysis of Large Scale Parallel Recordings. FASEB Journal, 2006, 20, A370.	0.2	2
56	Bifurcation of the respiratory response to lung inflation in anesthetized dogs. Respiratory Physiology and Neurobiology, 2017, 244, 26-31.	0.7	1
57	Pontoâ€medullary transection attenuates sympathorespiratory coupling and eliminates cardiac sinus arrhythmia in the in situ rat. FASEB Journal, 2008, 22, 739.6.	0.2	1
58	Cannabinoid Receptor mRNA Expression in Central and Peripheral Tissues in a Rodent Model of Peritonitis. Cannabis and Cannabinoid Research, 2022, , .	1.5	1
59	Periodicity: A Characteristic of Heart Rate Variability Modified by the Type of Mechanical Ventilation After Acute Lung Injury. Frontiers in Physiology, 2018, 9, 772.	1.3	0
60	Respiratory modulation of thoracic sympathetic nerve activity increased following brief hypoxia in the rat in situ preparation. FASEB Journal, 2006, 20, LB36.	0.2	0
61	Synchrony is altered in the respiratory pattern generator following acute hypoxic challenge. FASEB Journal, 2010, 24, 1042.1.	0.2	0
62	Evidence for distributed processing during hypoxic stimulation by the brainstem cardiorespiratory network. FASEB Journal, 2010, 24, 1042.5.	0.2	0
63	Protection from hypoxic conditioning in juvenile rats may be related to age or conditioning duration. FASEB Journal, 2011, 25, 1077.1.	0.2	0
64	Respiratoryâ€ S ympathetic Interactions and Central Baroreflex Pathways: Insights from Computational Modeling. FASEB Journal, 2011, 25, 1076.1.	0.2	0
65	Cardioâ€respiratory Coupling is Negligible in a Rodent Septicâ€Model. FASEB Journal, 2012, 26, 1148.5.	0.2	0
66	Phase synchronization as a flexible definition of the respiratory pattern: Application to pontineâ€dependent control of the respiratory pattern. FASEB Journal, 2018, 32, 915.2.	0.2	0
67	Chemoreflex Responses to LPS Exposure During a Critical Window of Development in the in situ Arterially Perfused Working Heart Brainstem Preparation. FASEB Journal, 2018, 32, 742.8.	0.2	0
68	Preliminary Phenotypic Cluster Analysis of Cardiorespiratory Modulated Neuronal Discharge Patterns with Dynamic Visualizations. FASEB Journal, 2018, 32, 893.5.	0.2	0
69	Modulation of mRNA Expression in Peripheral Tissue in a Rodent E. coli Sepsis Model. FASEB Journal, 2019, 33, 859.5.	0.2	0