Mojtaba Salouti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754264/publications.pdf

Version: 2024-02-01

933447 888059 21 308 10 citations h-index papers

g-index 22 22 22 500 docs citations times ranked citing authors all docs

17

#	Article	IF	CITATIONS
1	Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence. Biosensors and Bioelectronics, 2017, 92, 679-686.	10.1	43
2	Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. Journal of Photochemistry and Photobiology B: Biology, 2014, 130, 40-46.	3.8	36
3	Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Molecular and Cellular Probes, 2018, 41, 8-13.	2.1	36
4	Preparation and biological evaluation of 177Lu conjugated PR81 for radioimmunotherapy of breast cancer. Nuclear Medicine and Biology, 2011, 38, 849-855.	0.6	20
5	Bactericidal Effect of Silver Nanoparticles on Intramacrophage Brucella abortus 544. Jundishapur Journal of Microbiology, 2014, 7, e9039.	0.5	19
6	In vitro evaluation of actively targetable superparamagnetic nanoparticles to the folate receptor positive cancer cells. Materials Science and Engineering C, 2016, 69, 1147-1158.	7.3	17
7	Synergistic Antibacterial Activity of Plant Peptide MBP-1 and Silver Nanoparticles Combination on Healing of Infected Wound Due to Staphylococcus aureus. Jundishapur Journal of Microbiology, 2016, 9, e27997.	0.5	16
8	Preparation of a nanovaccine against <i>Brucella melitensis</i> M16 based on PLGA nanoparticles and oligopolysaccharide antigen. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 4248-4256.	2.8	15
9	99mTc-ceftriaxone, as a targeting radiopharmaceutical for scintigraphic imaging of infectious foci due to Staphylococcus aureus in mouse model. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 1227-1233.	1.5	12
10	Enhanced delivery of gentamicin to infection foci due to <i>Staphylococcus aureus</i> using gold nanorods. Drug Delivery, 2016, 23, 49-54.	5.7	12
11	Procedure Optimization for Increasing Biosynthesis Rate of Gold Nanoparticles by <i>Aspergillus flavus</i> Supernatant. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1468-1472.	0.6	11
12	Enhanced antibacterial effect of azlocillin in conjugation with silver nanoparticles against <i>Pseudomonas aeruginosa</i> . IET Nanobiotechnology, 2017, 11, 942-947.	3.8	10
13	Comparison of 99mTc-labeled PR81 and its F(ab′)2 fragments as radioimmunoscintigraphy agents for breast cancer imaging. Annals of Nuclear Medicine, 2011, 25, 87-92.	2.2	9
14	Gentamicinâ€gold nanoparticles conjugate: a contrast agent for Xâ€ray imaging of infectious foci due to <i>Staphylococcus aureus</i> . IET Nanobiotechnology, 2016, 10, 190-194.	3.8	9
15	Extracellular Bioynthesis of Silver Nanoparticles by <i>Penicillium chrysogenum</i> and <i>Penicillium expansum</i> . Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 844-847.	0.6	8
16	Extracellular Deposition of Silver Nanoparticles by <i>Bacillus Megaterium</i> . Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 903-906.	0.6	7
17	Synthesis and immunological evaluation of a nanovaccine based on PLGA nanoparticles and alginate antigen against infections caused by Pseudomonas aeruginosa. Biomedical Physics and Engineering Express, 2018, 4, 045016.	1.2	7
18	Designing an immunosensor for detection of <i>Brucella abortus</i> based on coloured silica nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 2562-2568.	2.8	7

#	Article	IF	CITATIONS
19	BBN conjugated GNPs: a new targeting contrast agent for imaging of breast cancer in radiology. IET Nanobiotechnology, 2017, 11, 604-611.	3.8	5
20	Factorial design analysis and optimisation of chitosanâ€based nanogels as controlled release system for gentamicin. IET Nanobiotechnology, 2018, 12, 12-17.	3.8	5
21	Immunization effect of lipopolysaccharide antigen in conjugation with PLGA nanoparticles as a nanovaccine against Brucella melitensis infection. Biologicals, 2021, 72, 10-17.	1.4	4