List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754170/publications.pdf Version: 2024-02-01

Sumelin

#	Article	IF	CITATIONS
1	Recent Application of Deep Eutectic Solvents as Green Solvent in Dispersive Liquid–Liquid Microextraction of Trace Level Chemical Contaminants in Food and Water. Critical Reviews in Analytical Chemistry, 2022, 52, 504-518.	1.8	33
2	Optimization of kerosene from a one-step catalytic hydrogenation of castor oil over Pt-La/SAPO-11 by response surface methodology. Biomass Conversion and Biorefinery, 2022, 12, 5975-5987.	2.9	3
3	Choline chloride–based deep eutectic solvents (Ch-DESs) as promising green solvents for phenolic compounds extraction from bioresources: state-of-the-art, prospects, and challenges. Biomass Conversion and Biorefinery, 2022, 12, 2949-2962.	2.9	38
4	One pot cascade biosynthesis of d-allulose from d-glucose and its kinetic modelling. Chemical Engineering Science, 2022, 248, 117167.	1.9	3
5	Microbes in valorisation of biomass to value-added products. Bioresource Technology, 2022, 347, 126738.	4.8	3
6	Parametric optimization and kinetic study of <scp>l</scp> â€lactic acid production by homologous batch fermentation of <i>Lactobacillus pentosus</i> cells. Biotechnology and Applied Biochemistry, 2021, 68, 809-822.	1.4	9
7	Enhanced Microalgae Growth for Biodiesel Production and Nutrients Removal in Raw Swine Wastewater by Carbon Sources Supplementation. Waste and Biomass Valorization, 2021, 12, 1991-1999.	1.8	28
8	Biological Approaches in Polyhydroxyalkanoates Recovery. Current Microbiology, 2021, 78, 1-10.	1.0	11
9	Optimization of Initial Cation Concentrations for L-Lactic Acid Production from Fructose by Lactobacillus pentosus Cells. Applied Biochemistry and Biotechnology, 2021, 193, 1496-1512.	1.4	4
10	<i>In Situ</i> Encapsulated CuCo@M-SiO ₂ for Higher Alcohol Synthesis from Biomass-Derived Syngas. ACS Sustainable Chemistry and Engineering, 2021, 9, 5910-5923.	3.2	21
11	Improvement of Conversion Efficiency from <scp>d</scp> -Glucose to <scp>d</scp> -Allulose by Whole-Cell Catalysts with Deep Eutectic Solvents. ACS Food Science & Technology, 2021, 1, 1323-1332.	1.3	3
12	A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. Bioresource Technology, 2021, 342, 126008.	4.8	38
13	Achieving high ethanol yield by co-feeding corncob residues and tea-seed cake at high-solids simultaneous saccharification and fermentation. Renewable Energy, 2020, 145, 858-866.	4.3	23
14	Efficient Microwave-Assisted Hydrolysis of Microcrystalline Cellulose into Glucose Using New Carbon-Based Solid Catalysts. Catalysis Letters, 2020, 150, 138-149.	1.4	11
15	Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: A review. Science of the Total Environment, 2020, 716, 135247.	3.9	49
16	On-column disulfide bond formation of monoclonal antibodies during Protein A chromatography eliminates low molecular weight species and rescues reduced antibodies. MAbs, 2020, 12, 1829333.	2.6	4
17	Optimization and kinetic modeling of interchain disulfide bond reoxidation of monoclonal antibodies in bioprocesses. MAbs, 2020, 12, 1829336.	2.6	8
18	Assembly of Zr-based coordination polymer over USY zeolite as a highly efficient and robust acid catalyst for one-pot transformation of fructose into 2,5-bis(isopropoxymethyl)furan. Journal of Catalysis, 2020, 389, 87-98.	3.1	16

#	Article	IF	CITATIONS
19	Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of eucalyptus. Bioresource Technology, 2020, 307, 123246.	4.8	37
20	Valorization of Technical Lignin for the Production of Desirable Resins with High Substitution Rate and Controllable Viscosity. ChemSusChem, 2020, 13, 4446-4454.	3.6	18
21	Honeycomb-like structure-tunable chitosan-based porous carbon microspheres for methylene blue efficient removal. Carbohydrate Polymers, 2020, 247, 116736.	5.1	43
22	Valorization of industrial xylan-rich hemicelluloses into water-soluble derivatives by in-situ acetylation in EmimAc ionic liquid. International Journal of Biological Macromolecules, 2020, 163, 457-463.	3.6	7
23	Optimization of immobilization conditions for Lactobacillus pentosus cells. Bioprocess and Biosystems Engineering, 2020, 43, 1071-1079.	1.7	14
24	Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8-C16 alkanes. Industrial Crops and Products, 2020, 146, 112182.	2.5	38
25	Kinetic modeling of Chinese hamster ovary cell culture: factors and principles. Critical Reviews in Biotechnology, 2020, 40, 265-281.	5.1	16
26	Co-Generation System of Bioethanol and Electricity with Microbial Fuel Cell Technology. Energy & Fuels, 2020, 34, 6414-6422.	2.5	21
27	What is bioprocess engineering?. , 2020, , 1-15.		11
28	Batch reactor. , 2020, , 109-140.		0
29	Chemical reactions on solid surfaces. , 2020, , 291-350.		2
30	Molecular regulation. , 2020, , 401-451.		0
31	Evolution and genetic engineering. , 2020, , 513-544.		0
32	Hydrogenation of methyl levulinate to γâ€valerolactone over Cu─Mg oxide using MeOH as <i>in situ</i> hydrogen source. Journal of Chemical Technology and Biotechnology, 2019, 94, 167-177.	1.6	9
33	Structural elucidation of tobacco stalk lignin isolated by different integrated processes. Industrial Crops and Products, 2019, 140, 111631.	2.5	23
34	Solvability and thermal response of cellulose with different crystal configurations. Frontiers of Engineering Management, 2019, 6, 62-69.	3.3	4
35	Insight into the glycosylation and hydrolysis kinetics of alpha-glucosidase in the synthesis of glycosides. Applied Microbiology and Biotechnology, 2019, 103, 9423-9432.	1.7	14
36	A kinetic study on the hydrolysis of corncob residues to levulinic acid in the FeCl3–NaCl system. Cellulose, 2019, 26, 8313-8323.	2.4	18

#	Article	IF	CITATIONS
37	Stimulatory effects of rhamnolipid on corncob residues ethanol production via high-solids simultaneous saccharification and fermentation. Fuel, 2019, 257, 116091.	3.4	24
38	Preparation of higher alcohols by biomass-based syngas from wheat straw over CoCuK/ZrO2-SiO2 catalyst. Industrial Crops and Products, 2019, 131, 54-61.	2.5	7
39	Insights into the Structural Changes and Potentials of Lignin from Bagasse during the Integrated Delignification Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 13886-13897.	3.2	32
40	Spray-dried xylooligosaccharides carried by gum Arabic. Industrial Crops and Products, 2019, 135, 330-343.	2.5	22
41	A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels. Applied Catalysis B: Environmental, 2019, 258, 117793.	10.8	41
42	Characterization of Glucokinase Catalysis from a Pseudo-Dimeric View. Applied Biochemistry and Biotechnology, 2019, 189, 345-358.	1.4	1
43	Catalytic Transfer Hydrogenolysis/Hydrogenation of Biomass-Derived 5-Formyloxymethylfurfural to 2, 5-Dimethylfuran Over Ni–Cu Bimetallic Catalyst with Formic Acid As a Hydrogen Donor. Industrial & Engineering Chemistry Research, 2019, 58, 5414-5422.	1.8	47
44	Efficient Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Fe ₂ O ₃ -Promoted MnO ₂ Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 7812-7822.	3.2	71
45	Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling. MAbs, 2019, 11, 191-204.	2.6	38
46	Structural Transformations of Hybrid <i>Pennisetum</i> Lignin: Effect of Microwave-Assisted Hydrothermal Pretreatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 3073-3082.	3.2	15
47	Unraveling the Fate of Lignin from Eucalyptus and Poplar during Integrated Delignification and Bleaching. ChemSusChem, 2019, 12, 1059-1068.	3.6	37
48	Lignin Reactions and Structural Alternations under Typical Biomass Pretreatment Methods. Current Organic Chemistry, 2019, 23, 2145-2154.	0.9	1
49	Preparation of 5â€(Aminomethyl)â€2â€furanmethanol by direct reductive amination of 5â€Hydroxymethylfurfural with aqueous ammonia over the Ni/SBAâ€15 catalyst. Journal of Chemical Technology and Biotechnology, 2018, 93, 3028-3034.	1.6	32
50	Enhanced hydrolysis of mechanically pretreated cellulose in water/CO2 system. Bioresource Technology, 2018, 261, 28-35.	4.8	18
51	Enzymatic pulping of lignocellulosic biomass. Industrial Crops and Products, 2018, 120, 16-24.	2.5	107
52	The effect of hot water pretreatment on the heavy metal adsorption capacity of acid insoluble lignin from <i>Paulownia elongata</i> . Journal of Chemical Technology and Biotechnology, 2018, 93, 1105-1112.	1.6	8
53	Study of the adsorption process of heavy metals cations on Kraft lignin. Chemical Engineering Research and Design, 2018, 139, 248-258.	2.7	37
54	Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis, 2018, 368, 69-78.	3.1	95

#	Article	IF	CITATIONS
55	Upgrading Traditional Pulp Mill into Biorefinery Platform: Wheat Straw as a Feedstock. ACS Sustainable Chemistry and Engineering, 2018, 6, 15284-15291.	3.2	9
56	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over tunable Zr-based bimetallic catalysts. Catalysis Science and Technology, 2018, 8, 4474-4484.	2.1	58
57	A Spatial Kinetic Model To Simulate Heat- and Mass-Transfer Transients within Biomass Particles during Hydrolysis. Energy & Fuels, 2018, 32, 8474-8482.	2.5	4
58	Structural Changes of Bagasse dusring the Homogeneous Esterification with Maleic Anhydride in Ionic Liquid 1-Allyl-3-methylimidazolium Chloride. Polymers, 2018, 10, 433.	2.0	23
59	Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 74, 230-257.	8.2	308
60	A mechanistic kinetic description of lactate dehydrogenase elucidating cancer diagnosis and inhibitor evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 564-571.	2.5	13
61	Chemical Structure Change of Magnesium Oxide in the Wet Oxidation Delignification Process of Biomass with Solid Alkali. ChemCatChem, 2017, 9, 2544-2549.	1.8	16
62	Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels. Renewable and Sustainable Energy Reviews, 2017, 77, 287-296.	8.2	165
63	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2696-2706.	3.6	269
64	Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries. ChemSusChem, 2017, 10, 3982-3993.	3.6	36
65	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2695-2695.	3.6	15
66	An Overview of Chemical Reaction Analysis. , 2017, , 81-137.		0
67	Batch Reactor. , 2017, , 139-178.		2
68	Chemical Reactions on Solid Surfaces. , 2017, , 375-450.		0
69	Evolution and Genetic Engineering. , 2017, , 783-828.		1
70	Active Oxygen and Solid Alkali Pretreatment of Bamboo Residue: Features of Hemicellulose during the Cooking Process. BioResources, 2017, 12, .	0.5	3
71	Preparation of CoCuGaK/ZrO ₂ –Al ₂ O ₃ Catalysts for the Synthesis of Higher Alcohols by CO Hydrogenation. Journal of Biobased Materials and Bioenergy, 2017, 11, 449-455.	0.1	1
72	Enhancement of high-solids enzymatic hydrolysis of corncob residues by bisulfite pretreatment for biorefinery. Bioresource Technology, 2016, 221, 461-468.	4.8	33

#	Article	IF	CITATIONS
73	Effects of ball milling on structural changes and hydrolysis of lignocellulosic biomass in liquid hot-water compressed carbon dioxide. Korean Journal of Chemical Engineering, 2016, 33, 2134-2141.	1.2	34
74	Enhancement of high-solids enzymatic hydrolysis and fermentation of furfural residues by addition of Gleditsia saponin. Fuel, 2016, 177, 142-147.	3.4	33
75	One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: A novel alternative platform chemical. Industrial Crops and Products, 2016, 83, 408-413.	2.5	29
76	Performance and emission characteristics of a diesel engine running on optimized ethyl levulinate–biodiesel–diesel blends. Energy, 2016, 95, 29-40.	4.5	48
77	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan. Green Chemistry, 2016, 18, 1080-1088.	4.6	136
78	Kinetic studies on biodiesel production using a trace acid catalyst. Catalysis Today, 2016, 264, 55-62.	2.2	15
79	Utilization of Hardwood in Biorefinery: A Kinetic Interpretation of Pilot-Scale Hot-Water Pretreatment of Paulownia elongata Woodchips. Journal of Biobased Materials and Bioenergy, 2016, 10, 339-348.	0.1	19
80	One Pot Synthesis of Pharmaceutical Intermediate 5-Dimethylaminomethyl-2-Furanmethanol from Bio-Derived Carbohydrates. Journal of Biobased Materials and Bioenergy, 2016, 10, 378-384.	0.1	3
81	A review on protein oligomerization process. International Journal of Precision Engineering and Manufacturing, 2015, 16, 2731-2760.	1.1	16
82	Catalytic Conversion of Glucose to Levulinate Ester Derivative in Ethylene Glycol. BioResources, 2015, 10, .	0.5	3
83	A mathematical model for competitive adsorptions. Separation and Purification Technology, 2015, 144, 80-89.	3.9	13
84	Purification and concentration of paulownia hot water wood extracts with nanofiltration. Separation and Purification Technology, 2015, 156, 848-855.	3.9	7
85	Depolymerization of Cellulolytic Enzyme Lignin for the Production of Monomeric Phenols over Raney Ni and Acidic Zeolite Catalysts. Energy & Fuels, 2015, 29, 1662-1668.	2.5	61
86	Quaternized chitosan/rectorite/AgNP nanocomposite catalyst for reduction of 4-nitrophenol. Journal of Alloys and Compounds, 2015, 647, 463-470.	2.8	21
87	Hot Water Pretreatment of Boreal Aspen Woodchips in a Pilot Scale Digester. Energies, 2015, 8, 1166-1180.	1.6	15
88	Inâ€Situ Catalytic Hydrogenation of Biomassâ€Derived Methyl Levulinate to γâ€Valerolactone in Methanol. ChemSusChem, 2015, 8, 1601-1607.	3.6	56
89	A synergetic pretreatment technology for woody biomass conversion. Applied Energy, 2015, 144, 114-128.	5.1	43
90	Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental, 2015, 174-175, 225-243.	10.8	216

#	Article	IF	CITATIONS
91	Cooperative adsorption on solid surfaces. Journal of Colloid and Interface Science, 2015, 450, 224-238.	5.0	142
92	Inâ€Situ Generated Catalyst System to Convert Biomassâ€Derived Levulinic Acid to γâ€Valerolactone. ChemCatChem, 2015, 7, 1372-1379.	1.8	62
93	Cooperative adsorption based kinetics for dichlorobenzene dechlorination over Pd/Fe bimetal. Chemical Engineering Science, 2015, 138, 510-515.	1.9	16
94	A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate. Applied Biochemistry and Biotechnology, 2015, 177, 162-174.	1.4	8
95	High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues. Bioresource Technology, 2015, 193, 401-407.	4.8	33
96	Quantification of xylooligomers in hot water wood extract by 1H–13C heteronuclear single quantum coherence NMR. Carbohydrate Polymers, 2015, 117, 903-909.	5.1	8
97	Compare study cellulose/Mn 3 O 4 composites using four types of alkalis by sonochemistry method. Carbohydrate Polymers, 2015, 115, 373-378.	5.1	10
98	Characterization and antioxidant activity of β-carotene loaded chitosan-graft-poly(lactide) nanomicelles. Carbohydrate Polymers, 2015, 117, 169-176.	5.1	96
99	Effect of Carbon Dioxide on the Liquid Hot-Water Treatment of Lignocellulosics. Journal of Biobased Materials and Bioenergy, 2015, 9, 334-341.	0.1	4
100	Ethanol production from hot-water sugar maple wood extract hydrolyzate: fermentation media optimization for Escherichia coli FBWHR. AIMS Environmental Science, 2015, 2, 269-281.	0.7	1
101	Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate. Energies, 2014, 7, 8411-8426.	1.6	12
102	Development of Thermochemical and Biochemical Technologies for Biorefineries. , 2014, , 457-488.		6
103	Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydrate Polymers, 2014, 103, 94-99.	5.1	140
104	"Green―films from renewable resources: Properties of epoxidized soybean oil plasticized ethyl cellulose films. Carbohydrate Polymers, 2014, 103, 198-206.	5.1	87
105	Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chemical Engineering Journal, 2014, 244, 137-144.	6.6	144
106	Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles. Bioresource Technology, 2014, 155, 21-27.	4.8	85
107	Conversion of biomass to γ-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Applied Catalysis B: Environmental, 2014, 147, 827-834.	10.8	285
108	Novel Process for the Extraction of Ethyl Levulinate by Toluene with Less Humins from the Ethanolysis Products of Carbohydrates. Energy & amp; Fuels, 2014, 28, 4251-4255.	2.5	31

#	Article	IF	CITATIONS
109	Production of Î ³ -valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 2014, 40, 608-620.	8.2	232
110	Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium. Industrial & Engineering Chemistry Research, 2014, 53, 3056-3064.	1.8	137
111	Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates. AMB Express, 2014, 4, 28.	1.4	19
112	Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran. Industrial & Engineering Chemistry Research, 2014, 53, 9969-9978.	1.8	128
113	A Visit on the Kinetics of Surface Adsorption. Journal of Bioprocess Engineering and Biorefinery, 2014, 3, 100-114.	0.2	6
114	Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid. Bioresource Technology, 2013, 148, 501-507.	4.8	110
115	Batch Reactor. , 2013, , 141-176.		0
116	Evolution and Genetic Engineering. , 2013, , 695-741.		0
117	Unstructured Kinetic Modeling of Batch Production of Lactic Acid from Hemicellulosic Sugars. Journal of Bioprocess Engineering and Biorefinery, 2013, 2, 40-45.	0.2	6
118	Ethanol Fermentation by <1>Escherichia 1 <1>Coli 1 FBWHR Using Hot-Water Sugar Maple Wood Exact Hydrolyzate as Substrate: A Batch Fermentation and Kinetic Study. Journal of Bioprocess Engineering and Biorefinery, 2013, 2, 20-26.	0.2	4
119	Kinetics of the Hot-Water Extraction of <l>Paulownia</l> <l>Elongata</l> Woodchips. Journal of Bioprocess Engineering and Biorefinery, 2013, 2, 1-10.	0.2	9
120	Chemical Reactions on Surfaces During Woody Biomass Hydrolysis. Journal of Bioprocess Engineering and Biorefinery, 2013, 2, 125-142.	0.2	7
121	Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances, 2012, 2, 11184.	1.7	329
122	Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 718-723.	2.7	38
123	12-Tungstophosphoric acid/boric acid as synergetic catalysts for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquid. Biomass and Bioenergy, 2012, 47, 289-294.	2.9	46
124	Biodiesel Production from Crude Jatropha curcas L. Oil with Trace Acid Catalyst. Chinese Journal of Chemical Engineering, 2012, 20, 740-746.	1.7	34
125	Efficient Production of Furan Derivatives from a Sugar Mixture by Catalytic Process. Energy & Fuels, 2012, 26, 4560-4567.	2.5	99
126	Effect of Agitation Rate on Ethanol Production from Sugar Maple Hemicellulosic Hydrolysate by Pichia stipitis. Applied Biochemistry and Biotechnology, 2012, 168, 29-36.	1.4	14

#	Article	IF	CITATIONS
127	Microfibrillated cellulose from bamboo pulp and its properties. Biomass and Bioenergy, 2012, 39, 78-83.	2.9	65
128	Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. Biomass and Bioenergy, 2012, 39, 39-47.	2.9	90
129	Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass and Bioenergy, 2012, 39, 73-77.	2.9	126
130	Biorefinery: Ensuring biomass as a sustainable renewable source of chemicals, materials, and energy. Biomass and Bioenergy, 2012, 39, 1-4.	2.9	62
131	Hot-water extraction and its effect on soda pulping of aspen woodchips. Biomass and Bioenergy, 2012, 39, 5-13.	2.9	46
132	Ethanol fermentation from hydrolysed hot-water wood extracts by pentose fermenting yeasts. Biomass and Bioenergy, 2012, 39, 31-38.	2.9	16
133	A sustainable woody biomass biorefinery. Biotechnology Advances, 2012, 30, 785-810.	6.0	137
134	Quantitative 2D HSQC NMR Analysis of Mixed Wood Sugars in Hemicellulosic Hydrolysate Fermentation Broth. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 93-100.	0.2	3
135	Woody Biomass Conversion: Sustainability and Water-Based Processes. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 6-32.	0.2	6
136	Butadiene Production from Ethanol. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 33-43.	0.2	15
137	Influence of Oxygen Mass Transfer on the Fermentation Behavior of <i>Burkholderia Cepacia</i> for Polyhydroxyalkanoates (PHAs) Production Utilizing Wood Extract Hydrolysate (WEH). Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 169-175.	0.2	2
138	Utilization of Woody Biomass: Sustainability. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 129-139.	0.2	6
139	Pretreatment technologies for biological and chemical conversion of woody biomass. Tappi Journal, 2012, 11, 9-16.	0.2	12
140	Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery. Forests, 2011, 2, 929-947.	0.9	49
141	Particle properties of sugar maple hemicellulose hydrolysate and its influence on growth and metabolic behavior of Pichia stipitis. Bioresource Technology, 2011, 102, 2133-2136.	4.8	9
142	Solid acid catalyzed glucose conversion to ethyl levulinate. Applied Catalysis A: General, 2011, 397, 259-265.	2.2	159
143	The biorefinery: Sustainably renewable route to commodity chemicals, energy, and materials. Biotechnology Advances, 2010, 28, 541-542.	6.0	4
144	Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnology Advances, 2010, 28, 563-582.	6.0	132

#	Article	IF	CITATIONS
145	Bioethanol fermentation by recombinant E. coli FBR5 and its robust mutant FBHW using hot-water wood extract hydrolyzate as substrate. Biotechnology Advances, 2010, 28, 602-608.	6.0	25
146	Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnology Advances, 2010, 28, 609-612.	6.0	39
147	Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose. Biotechnology Advances, 2010, 28, 613-619.	6.0	62
148	Isolation and characterization of wheat straw lignin with a formic acid process. Bioresource Technology, 2010, 101, 2311-2316.	4.8	82
149	Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure. Bioresource Technology, 2010, 101, 3586-3594.	4.8	94
150	Catalysis of Cu-Doped Co-Based Perovskite-Type Oxide in Wet Oxidation of Lignin To Produce Aromatic Aldehydes. Energy & Fuels, 2010, 24, 4797-4802.	2.5	93
151	Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides. Molecules, 2010, 15, 7946-7960.	1.7	36
152	Water-based woody biorefinery. Biotechnology Advances, 2009, 27, 542-550.	6.0	205
153	Optimization of ethanol production from hot-water extracts of sugar maple chips. Renewable Energy, 2009, 34, 2353-2356.	4.3	8
154	Activity and Stability of Perovskite-Type Oxide LaCoO ₃ Catalyst in Lignin Catalytic Wet Oxidation to Aromatic Aldehydes Process. Energy & Fuels, 2009, 23, 19-24.	2.5	96
155	Dissolution of Microcrystalline Cellulose in Phosphoric Acid—Molecular Changes and Kinetics. Molecules, 2009, 14, 5027-5041.	1.7	82
156	Synthesis of Î ³ -Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst. Energy & Fuels, 2009, 23, 3853-3858.	2.5	349
157	Poplar Woodchip as a Biorefinery Feedstock—Prehydrolysis with Formic/Acetic Acid/Water System, Xylitol Production from Hydrolysate and Kraft Pulping of Residual Woodchips. Journal of Biobased Materials and Bioenergy, 2009, 3, 37-45.	0.1	9
158	Effect of Hot-Water Extraction of Woodchips on the Kraft Pulping of Eucalyptus Woodchips. Journal of Biobased Materials and Bioenergy, 2009, 3, 363-372.	0.1	19
159	Perovskite-type Oxide LaMnO3: An Efficient and Recyclable Heterogeneous Catalyst for the Wet Aerobic Oxidation of Lignin to Aromatic Aldehydes. Catalysis Letters, 2008, 126, 106-111.	1.4	102
160	Hydrolysis of bamboo fiber cellulose in formic acid. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3, 480-486.	0.2	6
161	Reducing Sugar Content in Hemicellulose Hydrolysate by DNS Method: A Revisit. Journal of Biobased Materials and Bioenergy, 2008, 2, 156-161.	0.1	88
162	Biorefinery: Conversion of Woody Biomass to Chemicals, Energy and Materials. Journal of Biobased Materials and Bioenergy, 2008, 2, 100-120.	0.1	180

#	Article	IF	CITATIONS
163	Membrane Filtration: Concentration and Purification of Hydrolyzates from Biomass. Journal of Biobased Materials and Bioenergy, 2008, 2, 121-134.	0.1	36
164	<i>A Special Issue on</i> The Biorefinery: Employing Biomass to Relieve Our Dependence on Fossil Sources. Journal of Biobased Materials and Bioenergy, 2008, 2, 97-99.	0.1	1
165	A Kinetic Model on Autocatalytic Reactions in Woody Biomass Hydrolysis. Journal of Biobased Materials and Bioenergy, 2008, 2, 135-147.	0.1	36
166	Hydrolysis of Cotton Fiber Cellulose in Formic Acid. Energy & Fuels, 2007, 21, 2386-2389.	2.5	108
167	From forest biomass to chemicals and energy Biorefinery initiative in New York State. Industrial Biotechnology, 2006, 2, 113-120.	0.5	37
168	Dispersion in Porous Media. , 2005, , 81-140.		25
169	Kinetic Model for Kraft Pulping Process. Industrial & Engineering Chemistry Research, 2005, 44, 7078-7085.	1.8	18
170	Estimation of Isomeric Distributions in Petroleum Fractions. Energy & amp; Fuels, 2005, 19, 1660-1672.	2.5	15
171	A simplistic mechanistic model and effect of consistency on alkaline peroxide brightening of mechanical pulps. Chemical Engineering Science, 2004, 59, 4377-4383.	1.9	7
172	Bubble Size Distributions for Dispersed Air – Water Flows in a 100 mm Horizontal Pipeline. Canadian Journal of Chemical Engineering, 2004, 82, 858-864.	0.9	9
173	Chemical kinetics of alkaline peroxide brightening of mechanical pulps. Chemical Engineering Science, 2003, 58, 2229-2244.	1.9	24
174	Bubble size in coalescence dominant regime of turbulent air–water flow through horizontal pipes. International Journal of Multiphase Flow, 2003, 29, 1451-1471.	1.6	45
175	Effect of Dispersion on Particle Segregation Due to Sparged Air in a Hydrocyclone. Canadian Journal of Chemical Engineering, 2003, 81, 549-556.	0.9	0
176	Prediction of random packing limit for multimodal particle mixtures. Powder Technology, 2002, 126, 283-296.	2.1	63
177	Settling Velocities of Polydisperse Concentrated Suspensions. Canadian Journal of Chemical Engineering, 2002, 80, 783-790.	0.9	25
178	A new pressure drop model for flowâ€ŧhrough orifice plates. Canadian Journal of Chemical Engineering, 2001, 79, 100-106.	0.9	7
179	A continuum model for gas–liquid flow in packed towers. Chemical Engineering Science, 2001, 56, 5945-5953.	1.9	25
180	Gas-Liquid Countercurrent Flows Through Packed Towers. Journal of Porous Media, 2000, 3, 16.	1.0	7

#	Article	IF	CITATIONS
181	Non-linear flows in porous media. Journal of Non-Newtonian Fluid Mechanics, 1999, 86, 229-252.	1.0	72
182	Particle dispersion for suspension flow. Chemical Engineering Science, 1999, 54, 873-891.	1.9	34
183	A Continuum Approach to Multiphase Flows in Porous Media. Journal of Porous Media, 1999, 2, 295-308.	1.0	3
184	On non-Newtonian fluid flow in ducts and porous media. Chemical Engineering Science, 1998, 53, 1175-1201.	1.9	44
185	SINGLE FLUID FLOW IN POROUS MEDIA. Chemical Engineering Communications, 1996, 148-150, 653-732.	1.5	75
186	Rheology of Suspensions. Advances in Chemistry Series, 1996, , 107-176.	0.6	38
187	Principles of Single-Phase Flow Through Porous Media. Advances in Chemistry Series, 1996, , 227-286.	0.6	7
188	Steady incompressible laminar flow in porous media. Chemical Engineering Science, 1994, 49, 3565-3586.	1.9	94
189	Developing convective heat transfer in helical pipes with finite pitch. International Journal of Heat and Fluid Flow, 1994, 15, 66-74.	1.1	33
190	A decoupling numerical method for fluid flow. International Journal for Numerical Methods in Fluids, 1993, 16, 659-682.	0.9	9
191	Axially invariant laminar flow in helical pipes with a finite pitch. Journal of Fluid Mechanics, 1993, 251, 315-353.	1.4	122
192	Impact of preparation <scp>pH</scp> and temperature on amino acid stability of highly concentrated cell culture feed media. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	1