Shijie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8754170/publications.pdf

Version: 2024-02-01

41258 49773 8,869 192 49 87 citations h-index g-index papers 200 200 200 8769 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of \hat{I}^3 -Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst. Energy & Ene	2.5	349
2	Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances, 2012, 2, 11184.	1.7	329
3	Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 74, 230-257.	8.2	308
4	Conversion of biomass to \hat{I}^3 -valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Applied Catalysis B: Environmental, 2014, 147, 827-834.	10.8	285
5	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2696-2706.	3.6	269
6	Production of \hat{I}^3 -valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 2014, 40, 608-620.	8.2	232
7	Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental, 2015, 174-175, 225-243.	10.8	216
8	Water-based woody biorefinery. Biotechnology Advances, 2009, 27, 542-550.	6.0	205
9	Biorefinery: Conversion of Woody Biomass to Chemicals, Energy and Materials. Journal of Biobased Materials and Bioenergy, 2008, 2, 100-120.	0.1	180
10	Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels. Renewable and Sustainable Energy Reviews, 2017, 77, 287-296.	8.2	165
11	Solid acid catalyzed glucose conversion to ethyl levulinate. Applied Catalysis A: General, 2011, 397, 259-265.	2.2	159
12	Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chemical Engineering Journal, 2014, 244, 137-144.	6.6	144
13	Cooperative adsorption on solid surfaces. Journal of Colloid and Interface Science, 2015, 450, 224-238.	5.0	142
14	Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydrate Polymers, 2014, 103, 94-99.	5.1	140
15	A sustainable woody biomass biorefinery. Biotechnology Advances, 2012, 30, 785-810.	6.0	137
16	Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium. Industrial & Engineering Chemistry Research, 2014, 53, 3056-3064.	1.8	137
17	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan. Green Chemistry, 2016, 18, 1080-1088.	4.6	136
18	Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnology Advances, 2010, 28, 563-582.	6.0	132

#	Article	IF	Citations
19	Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran. Industrial & Engineering Chemistry Research, 2014, 53, 9969-9978.	1.8	128
20	Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass and Bioenergy, 2012, 39, 73-77.	2.9	126
21	Axially invariant laminar flow in helical pipes with a finite pitch. Journal of Fluid Mechanics, 1993, 251, 315-353.	1.4	122
22	Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid. Bioresource Technology, 2013, 148, 501-507.	4.8	110
23	Hydrolysis of Cotton Fiber Cellulose in Formic Acid. Energy & Fuels, 2007, 21, 2386-2389.	2.5	108
24	Enzymatic pulping of lignocellulosic biomass. Industrial Crops and Products, 2018, 120, 16-24.	2.5	107
25	Perovskite-type Oxide LaMnO3: An Efficient and Recyclable Heterogeneous Catalyst for the Wet Aerobic Oxidation of Lignin to Aromatic Aldehydes. Catalysis Letters, 2008, 126, 106-111.	1.4	102
26	Efficient Production of Furan Derivatives from a Sugar Mixture by Catalytic Process. Energy & Energy & Fuels, 2012, 26, 4560-4567.	2.5	99
27	Activity and Stability of Perovskite-Type Oxide LaCoO ₃ Catalyst in Lignin Catalytic Wet Oxidation to Aromatic Aldehydes Process. Energy & Energy & 2009, 23, 19-24.	2.5	96
28	Characterization and antioxidant activity of \hat{l}^2 -carotene loaded chitosan-graft-poly(lactide) nanomicelles. Carbohydrate Polymers, 2015, 117, 169-176.	5.1	96
29	Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis, 2018, 368, 69-78.	3.1	95
30	Steady incompressible laminar flow in porous media. Chemical Engineering Science, 1994, 49, 3565-3586.	1.9	94
31	Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure. Bioresource Technology, 2010, 101, 3586-3594.	4.8	94
32	Catalysis of Cu-Doped Co-Based Perovskite-Type Oxide in Wet Oxidation of Lignin To Produce Aromatic Aldehydes. Energy &	2.5	93
33	Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. Biomass and Bioenergy, 2012, 39, 39-47.	2.9	90
34	Reducing Sugar Content in Hemicellulose Hydrolysate by DNS Method: A Revisit. Journal of Biobased Materials and Bioenergy, 2008, 2, 156-161.	0.1	88
35	"Green―films from renewable resources: Properties of epoxidized soybean oil plasticized ethyl cellulose films. Carbohydrate Polymers, 2014, 103, 198-206.	5.1	87
36	Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles. Bioresource Technology, 2014, 155, 21-27.	4.8	85

#	Article	IF	CITATIONS
37	Dissolution of Microcrystalline Cellulose in Phosphoric Acid—Molecular Changes and Kinetics. Molecules, 2009, 14, 5027-5041.	1.7	82
38	Isolation and characterization of wheat straw lignin with a formic acid process. Bioresource Technology, 2010, 101, 2311-2316.	4.8	82
39	SINGLE FLUID FLOW IN POROUS MEDIA. Chemical Engineering Communications, 1996, 148-150, 653-732.	1.5	75
40	Non-linear flows in porous media. Journal of Non-Newtonian Fluid Mechanics, 1999, 86, 229-252.	1.0	72
41	Efficient Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Fe ₂ O ₃ -Promoted MnO ₂ Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 7812-7822.	3.2	71
42	Microfibrillated cellulose from bamboo pulp and its properties. Biomass and Bioenergy, 2012, 39, 78-83.	2.9	65
43	Prediction of random packing limit for multimodal particle mixtures. Powder Technology, 2002, 126, 283-296.	2.1	63
44	Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose. Biotechnology Advances, 2010, 28, 613-619.	6.0	62
45	Biorefinery: Ensuring biomass as a sustainable renewable source of chemicals, materials, and energy. Biomass and Bioenergy, 2012, 39, 1-4.	2.9	62
46	Inâ€Situ Generated Catalyst System to Convert Biomassâ€Derived Levulinic Acid to γâ€Valerolactone. ChemCatChem, 2015, 7, 1372-1379.	1.8	62
47	Depolymerization of Cellulolytic Enzyme Lignin for the Production of Monomeric Phenols over Raney Ni and Acidic Zeolite Catalysts. Energy & Fuels, 2015, 29, 1662-1668.	2.5	61
48	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over tunable Zr-based bimetallic catalysts. Catalysis Science and Technology, 2018, 8, 4474-4484.	2.1	58
49	Inâ€Situ Catalytic Hydrogenation of Biomassâ€Derived Methyl Levulinate to γâ€Valerolactone in Methanol. ChemSusChem, 2015, 8, 1601-1607.	3 . 6	56
50	Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery. Forests, 2011, 2, 929-947.	0.9	49
51	Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: A review. Science of the Total Environment, 2020, 716, 135247.	3.9	49
52	Performance and emission characteristics of a diesel engine running on optimized ethyl levulinate–biodiesel–diesel blends. Energy, 2016, 95, 29-40.	4. 5	48
53	Catalytic Transfer Hydrogenolysis/Hydrogenation of Biomass-Derived 5-Formyloxymethylfurfural to 2, 5-Dimethylfuran Over Ni–Cu Bimetallic Catalyst with Formic Acid As a Hydrogen Donor. Industrial & amp; Engineering Chemistry Research, 2019, 58, 5414-5422.	1.8	47
54	12-Tungstophosphoric acid/boric acid as synergetic catalysts for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquid. Biomass and Bioenergy, 2012, 47, 289-294.	2.9	46

#	Article	IF	CITATIONS
55	Hot-water extraction and its effect on soda pulping of aspen woodchips. Biomass and Bioenergy, 2012, 39, 5-13.	2.9	46
56	Bubble size in coalescence dominant regime of turbulent air–water flow through horizontal pipes. International Journal of Multiphase Flow, 2003, 29, 1451-1471.	1.6	45
57	On non-Newtonian fluid flow in ducts and porous media. Chemical Engineering Science, 1998, 53, 1175-1201.	1.9	44
58	A synergetic pretreatment technology for woody biomass conversion. Applied Energy, 2015, 144, 114-128.	5.1	43
59	Honeycomb-like structure-tunable chitosan-based porous carbon microspheres for methylene blue efficient removal. Carbohydrate Polymers, 2020, 247, 116736.	5.1	43
60	A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels. Applied Catalysis B: Environmental, 2019, 258, 117793.	10.8	41
61	Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnology Advances, 2010, 28, 609-612.	6.0	39
62	Rheology of Suspensions. Advances in Chemistry Series, 1996, , 107-176.	0.6	38
63	Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 718-723.	2.7	38
64	Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling. MAbs, 2019, 11, 191-204.	2.6	38
65	Choline chloride–based deep eutectic solvents (Ch-DESs) as promising green solvents for phenolic compounds extraction from bioresources: state-of-the-art, prospects, and challenges. Biomass Conversion and Biorefinery, 2022, 12, 2949-2962.	2.9	38
66	Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8-C16 alkanes. Industrial Crops and Products, 2020, 146, 112182.	2.5	38
67	A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. Bioresource Technology, 2021, 342, 126008.	4.8	38
68	From forest biomass to chemicals and energy Biorefinery initiative in New York State. Industrial Biotechnology, 2006, 2, 113-120.	0.5	37
69	Study of the adsorption process of heavy metals cations on Kraft lignin. Chemical Engineering Research and Design, 2018, 139, 248-258.	2.7	37
70	Unraveling the Fate of Lignin from Eucalyptus and Poplar during Integrated Delignification and Bleaching. ChemSusChem, 2019, 12, 1059-1068.	3.6	37
71	Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of eucalyptus. Bioresource Technology, 2020, 307, 123246.	4.8	37
72	Membrane Filtration: Concentration and Purification of Hydrolyzates from Biomass. Journal of Biobased Materials and Bioenergy, 2008, 2, 121-134.	0.1	36

#	Article	IF	CITATIONS
73	Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides. Molecules, 2010, 15, 7946-7960.	1.7	36
74	Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries. ChemSusChem, 2017, 10, 3982-3993.	3.6	36
75	A Kinetic Model on Autocatalytic Reactions in Woody Biomass Hydrolysis. Journal of Biobased Materials and Bioenergy, 2008, 2, 135-147.	0.1	36
76	Particle dispersion for suspension flow. Chemical Engineering Science, 1999, 54, 873-891.	1.9	34
77	Biodiesel Production from Crude Jatropha curcas L. Oil with Trace Acid Catalyst. Chinese Journal of Chemical Engineering, 2012, 20, 740-746.	1.7	34
78	Effects of ball milling on structural changes and hydrolysis of lignocellulosic biomass in liquid hot-water compressed carbon dioxide. Korean Journal of Chemical Engineering, 2016, 33, 2134-2141.	1.2	34
79	Developing convective heat transfer in helical pipes with finite pitch. International Journal of Heat and Fluid Flow, 1994, 15, 66-74.	1.1	33
80	High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues. Bioresource Technology, 2015, 193, 401-407.	4.8	33
81	Enhancement of high-solids enzymatic hydrolysis of corncob residues by bisulfite pretreatment for biorefinery. Bioresource Technology, 2016, 221, 461-468.	4.8	33
82	Enhancement of high-solids enzymatic hydrolysis and fermentation of furfural residues by addition of Gleditsia saponin. Fuel, 2016, 177, 142-147.	3.4	33
83	Recent Application of Deep Eutectic Solvents as Green Solvent in Dispersive Liquid–Liquid Microextraction of Trace Level Chemical Contaminants in Food and Water. Critical Reviews in Analytical Chemistry, 2022, 52, 504-518.	1.8	33
84	Preparation of 5â€(Aminomethyl)â€2â€furanmethanol by direct reductive amination of 5â€Hydroxymethylfurfural with aqueous ammonia over the Ni/SBAâ€15 catalyst. Journal of Chemical Technology and Biotechnology, 2018, 93, 3028-3034.	1.6	32
85	Insights into the Structural Changes and Potentials of Lignin from Bagasse during the Integrated Delignification Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 13886-13897.	3.2	32
86	Novel Process for the Extraction of Ethyl Levulinate by Toluene with Less Humins from the Ethanolysis Products of Carbohydrates. Energy & Ethanolysis Products of Carbohydrates. Energy & Ethanolysis Products of Carbohydrates.	2.5	31
87	One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: A novel alternative platform chemical. Industrial Crops and Products, 2016, 83, 408-413.	2.5	29
88	Enhanced Microalgae Growth for Biodiesel Production and Nutrients Removal in Raw Swine Wastewater by Carbon Sources Supplementation. Waste and Biomass Valorization, 2021, 12, 1991-1999.	1.8	28
89	A continuum model for gas–liquid flow in packed towers. Chemical Engineering Science, 2001, 56, 5945-5953.	1.9	25
90	Dispersion in Porous Media. , 2005, , 81-140.		25

#	Article	IF	Citations
91	Settling Velocities of Polydisperse Concentrated Suspensions. Canadian Journal of Chemical Engineering, 2002, 80, 783-790.	0.9	25
92	Bioethanol fermentation by recombinant E. coli FBR5 and its robust mutant FBHW using hot-water wood extract hydrolyzate as substrate. Biotechnology Advances, 2010, 28, 602-608.	6.0	25
93	Chemical kinetics of alkaline peroxide brightening of mechanical pulps. Chemical Engineering Science, 2003, 58, 2229-2244.	1.9	24
94	Stimulatory effects of rhamnolipid on corncob residues ethanol production via high-solids simultaneous saccharification and fermentation. Fuel, 2019, 257, 116091.	3.4	24
95	Structural Changes of Bagasse dusring the Homogeneous Esterification with Maleic Anhydride in lonic Liquid 1-Allyl-3-methylimidazolium Chloride. Polymers, 2018, 10, 433.	2.0	23
96	Structural elucidation of tobacco stalk lignin isolated by different integrated processes. Industrial Crops and Products, 2019, 140, 111631.	2.5	23
97	Achieving high ethanol yield by co-feeding corncob residues and tea-seed cake at high-solids simultaneous saccharification and fermentation. Renewable Energy, 2020, 145, 858-866.	4.3	23
98	Spray-dried xylooligosaccharides carried by gum Arabic. Industrial Crops and Products, 2019, 135, 330-343.	2.5	22
99	Quaternized chitosan/rectorite/AgNP nanocomposite catalyst for reduction of 4-nitrophenol. Journal of Alloys and Compounds, 2015, 647, 463-470.	2.8	21
100	Co-Generation System of Bioethanol and Electricity with Microbial Fuel Cell Technology. Energy & Energ	2.5	21
101	<i>In Situ</i> Encapsulated CuCo@M-SiO ₂ for Higher Alcohol Synthesis from Biomass-Derived Syngas. ACS Sustainable Chemistry and Engineering, 2021, 9, 5910-5923.	3.2	21
102	Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates. AMB Express, 2014, 4, 28.	1.4	19
103	Effect of Hot-Water Extraction of Woodchips on the Kraft Pulping of Eucalyptus Woodchips. Journal of Biobased Materials and Bioenergy, 2009, 3, 363-372.	0.1	19
104	Utilization of Hardwood in Biorefinery: A Kinetic Interpretation of Pilot-Scale Hot-Water Pretreatment of Paulownia elongata Woodchips. Journal of Biobased Materials and Bioenergy, 2016, 10, 339-348.	0.1	19
105	Kinetic Model for Kraft Pulping Process. Industrial & Engineering Chemistry Research, 2005, 44, 7078-7085.	1.8	18
106	Enhanced hydrolysis of mechanically pretreated cellulose in water/CO2 system. Bioresource Technology, 2018, 261, 28-35.	4.8	18
107	A kinetic study on the hydrolysis of corncob residues to levulinic acid in the FeCl3–NaCl system. Cellulose, 2019, 26, 8313-8323.	2.4	18
108	Valorization of Technical Lignin for the Production of Desirable Resins with High Substitution Rate and Controllable Viscosity. ChemSusChem, 2020, 13, 4446-4454.	3.6	18

#	Article	IF	Citations
109	Ethanol fermentation from hydrolysed hot-water wood extracts by pentose fermenting yeasts. Biomass and Bioenergy, 2012, 39, 31-38.	2.9	16
110	A review on protein oligomerization process. International Journal of Precision Engineering and Manufacturing, 2015, 16, 2731-2760.	1.1	16
111	Cooperative adsorption based kinetics for dichlorobenzene dechlorination over Pd/Fe bimetal. Chemical Engineering Science, 2015, 138, 510-515.	1.9	16
112	Chemical Structure Change of Magnesium Oxide in the Wet Oxidation Delignification Process of Biomass with Solid Alkali. ChemCatChem, 2017, 9, 2544-2549.	1.8	16
113	Assembly of Zr-based coordination polymer over USY zeolite as a highly efficient and robust acid catalyst for one-pot transformation of fructose into 2,5-bis(isopropoxymethyl)furan. Journal of Catalysis, 2020, 389, 87-98.	3.1	16
114	Kinetic modeling of Chinese hamster ovary cell culture: factors and principles. Critical Reviews in Biotechnology, 2020, 40, 265-281.	5.1	16
115	Estimation of Isomeric Distributions in Petroleum Fractions. Energy & Energ	2.5	15
116	Hot Water Pretreatment of Boreal Aspen Woodchips in a Pilot Scale Digester. Energies, 2015, 8, 1166-1180.	1.6	15
117	Kinetic studies on biodiesel production using a trace acid catalyst. Catalysis Today, 2016, 264, 55-62.	2.2	15
118	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2695-2695.	3.6	15
119	Structural Transformations of Hybrid <i>Pennisetum</i> Lignin: Effect of Microwave-Assisted Hydrothermal Pretreatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 3073-3082.	3.2	15
120	Butadiene Production from Ethanol. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 33-43.	0.2	15
121	Effect of Agitation Rate on Ethanol Production from Sugar Maple Hemicellulosic Hydrolysate by Pichia stipitis. Applied Biochemistry and Biotechnology, 2012, 168, 29-36.	1.4	14
122	Insight into the glycosylation and hydrolysis kinetics of alpha-glucosidase in the synthesis of glycosides. Applied Microbiology and Biotechnology, 2019, 103, 9423-9432.	1.7	14
123	Optimization of immobilization conditions for Lactobacillus pentosus cells. Bioprocess and Biosystems Engineering, 2020, 43, 1071-1079.	1.7	14
124	A mathematical model for competitive adsorptions. Separation and Purification Technology, 2015, 144, 80-89.	3.9	13
125	A mechanistic kinetic description of lactate dehydrogenase elucidating cancer diagnosis and inhibitor evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 564-571.	2.5	13
126	Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate. Energies, 2014, 7, 8411-8426.	1.6	12

#	Article	IF	CITATIONS
127	Pretreatment technologies for biological and chemical conversion of woody biomass. Tappi Journal, 2012, 11, 9-16.	0.2	12
128	Efficient Microwave-Assisted Hydrolysis of Microcrystalline Cellulose into Glucose Using New Carbon-Based Solid Catalysts. Catalysis Letters, 2020, 150, 138-149.	1.4	11
129	What is bioprocess engineering?. , 2020, , 1-15.		11
130	Biological Approaches in Polyhydroxyalkanoates Recovery. Current Microbiology, 2021, 78, 1-10.	1.0	11
131	Compare study cellulose/Mn 3 O 4 composites using four types of alkalis by sonochemistry method. Carbohydrate Polymers, 2015, 115, 373-378.	5.1	10
132	A decoupling numerical method for fluid flow. International Journal for Numerical Methods in Fluids, 1993, 16, 659-682.	0.9	9
133	Bubble Size Distributions for Dispersed Air & Dispersed Roman; Water Flows in a 100 mm Horizontal Pipeline. Canadian Journal of Chemical Engineering, 2004, 82, 858-864.	0.9	9
134	Particle properties of sugar maple hemicellulose hydrolysate and its influence on growth and metabolic behavior of Pichia stipitis. Bioresource Technology, 2011, 102, 2133-2136.	4.8	9
135	Upgrading Traditional Pulp Mill into Biorefinery Platform: Wheat Straw as a Feedstock. ACS Sustainable Chemistry and Engineering, 2018, 6, 15284-15291.	3.2	9
136	Hydrogenation of methyl levulinate to γâ€valerolactone over Cu─Mg oxide using MeOH as <i>in situ</i> hydrogen source. Journal of Chemical Technology and Biotechnology, 2019, 94, 167-177.	1.6	9
137	Parametric optimization and kinetic study of <scp>l</scp> â€kactic acid production by homologous batch fermentation of <i>Lactobacillus pentosus</i> cells. Biotechnology and Applied Biochemistry, 2021, 68, 809-822.	1.4	9
138	Kinetics of the Hot-Water Extraction of <l>Paulownia</l> <l>Elongata</l> Woodchips. Journal of Bioprocess Engineering and Biorefinery, 2013, 2, 1-10.	0.2	9
139	Poplar Woodchip as a Biorefinery Feedstockâ€"Prehydrolysis with Formic/Acetic Acid/Water System, Xylitol Production from Hydrolysate and Kraft Pulping of Residual Woodchips. Journal of Biobased Materials and Bioenergy, 2009, 3, 37-45.	0.1	9
140	Optimization of ethanol production from hot-water extracts of sugar maple chips. Renewable Energy, 2009, 34, 2353-2356.	4.3	8
141	A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate. Applied Biochemistry and Biotechnology, 2015, 177, 162-174.	1.4	8
142	Quantification of xylooligomers in hot water wood extract by 1H–13C heteronuclear single quantum coherence NMR. Carbohydrate Polymers, 2015, 117, 903-909.	5.1	8
143	The effect of hot water pretreatment on the heavy metal adsorption capacity of acid insoluble lignin from <i>Paulownia elongata</i> . Journal of Chemical Technology and Biotechnology, 2018, 93, 1105-1112.	1.6	8
144	Optimization and kinetic modeling of interchain disulfide bond reoxidation of monoclonal antibodies in bioprocesses. MAbs, 2020, 12, 1829336.	2.6	8

#	Article	ΙF	Citations
145	Principles of Single-Phase Flow Through Porous Media. Advances in Chemistry Series, 1996, , 227-286.	0.6	7
146	A new pressure drop model for flowâ€through orifice plates. Canadian Journal of Chemical Engineering, 2001, 79, 100-106.	0.9	7
147	A simplistic mechanistic model and effect of consistency on alkaline peroxide brightening of mechanical pulps. Chemical Engineering Science, 2004, 59, 4377-4383.	1.9	7
148	Purification and concentration of paulownia hot water wood extracts with nanofiltration. Separation and Purification Technology, 2015, 156, 848-855.	3.9	7
149	Preparation of higher alcohols by biomass-based syngas from wheat straw over CoCuK/ZrO2-SiO2 catalyst. Industrial Crops and Products, 2019, 131, 54-61.	2.5	7
150	Valorization of industrial xylan-rich hemicelluloses into water-soluble derivatives by in-situ acetylation in EmimAc ionic liquid. International Journal of Biological Macromolecules, 2020, 163, 457-463.	3.6	7
151	Chemical Reactions on Surfaces During Woody Biomass Hydrolysis. Journal of Bioprocess Engineering and Biorefinery, 2013, 2, 125-142.	0.2	7
152	Gas-Liquid Countercurrent Flows Through Packed Towers. Journal of Porous Media, 2000, 3, 16.	1.0	7
153	Hydrolysis of bamboo fiber cellulose in formic acid. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3, 480-486.	0.2	6
154	Development of Thermochemical and Biochemical Technologies for Biorefineries., 2014,, 457-488.		6
155	Woody Biomass Conversion: Sustainability and Water-Based Processes. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 6-32.	0.2	6
156	Utilization of Woody Biomass: Sustainability. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 129-139.	0.2	6
157	Unstructured Kinetic Modeling of Batch Production of Lactic Acid from Hemicellulosic Sugars. Journal of Bioprocess Engineering and Biorefinery, 2013, 2, 40-45.	0.2	6
158	A Visit on the Kinetics of Surface Adsorption. Journal of Bioprocess Engineering and Biorefinery, 2014, 3, 100-114.	0.2	6
159	The biorefinery: Sustainably renewable route to commodity chemicals, energy, and materials. Biotechnology Advances, 2010, 28, 541-542.	6.0	4
160	A Spatial Kinetic Model To Simulate Heat- and Mass-Transfer Transients within Biomass Particles during Hydrolysis. Energy & Energy & 2018, 32, 8474-8482.	2.5	4
161	Solvability and thermal response of cellulose with different crystal configurations. Frontiers of Engineering Management, 2019, 6, 62-69.	3.3	4
162	On-column disulfide bond formation of monoclonal antibodies during Protein A chromatography eliminates low molecular weight species and rescues reduced antibodies. MAbs, 2020, 12, 1829333.	2.6	4

#	Article	IF	Citations
163	Optimization of Initial Cation Concentrations for L-Lactic Acid Production from Fructose by Lactobacillus pentosus Cells. Applied Biochemistry and Biotechnology, 2021, 193, 1496-1512.	1.4	4
164	Ethanol Fermentation by <i>Escherichia Coli </i> FBWHR Using Hot-Water Sugar Maple Wood Exact Hydrolyzate as Substrate: A Batch Fermentation and Kinetic Study. Journal of Bioprocess Engineering and Biorefinery, 2013, 2, 20-26.	0.2	4
165	Effect of Carbon Dioxide on the Liquid Hot-Water Treatment of Lignocellulosics. Journal of Biobased Materials and Bioenergy, 2015, 9, 334-341.	0.1	4
166	Catalytic Conversion of Glucose to Levulinate Ester Derivative in Ethylene Glycol. BioResources, 2015, 10, .	0.5	3
167	Active Oxygen and Solid Alkali Pretreatment of Bamboo Residue: Features of Hemicellulose during the Cooking Process. BioResources, 2017, 12, .	0.5	3
168	Optimization of kerosene from a one-step catalytic hydrogenation of castor oil over Pt-La/SAPO-11 by response surface methodology. Biomass Conversion and Biorefinery, 2022, 12, 5975-5987.	2.9	3
169	Improvement of Conversion Efficiency from <scp>d</scp> -Glucose to <scp>d</scp> -Allulose by Whole-Cell Catalysts with Deep Eutectic Solvents. ACS Food Science & Technology, 2021, 1, 1323-1332.	1.3	3
170	Quantitative 2D HSQC NMR Analysis of Mixed Wood Sugars in Hemicellulosic Hydrolysate Fermentation Broth. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 93-100.	0.2	3
171	One Pot Synthesis of Pharmaceutical Intermediate 5-Dimethylaminomethyl-2-Furanmethanol from Bio-Derived Carbohydrates. Journal of Biobased Materials and Bioenergy, 2016, 10, 378-384.	0.1	3
172	A Continuum Approach to Multiphase Flows in Porous Media. Journal of Porous Media, 1999, 2, 295-308.	1.0	3
173	One pot cascade biosynthesis of d-allulose from d-glucose and its kinetic modelling. Chemical Engineering Science, 2022, 248, 117167.	1.9	3
174	Microbes in valorisation of biomass to value-added products. Bioresource Technology, 2022, 347, 126738.	4.8	3
175	Batch Reactor., 2017,, 139-178.		2
176	Chemical reactions on solid surfaces. , 2020, , 291-350.		2
177	Influence of Oxygen Mass Transfer on the Fermentation Behavior of <i>Burkholderia Cepacia</i> for Polyhydroxyalkanoates (PHAs) Production Utilizing Wood Extract Hydrolysate (WEH). Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 169-175.	0.2	2
178	Evolution and Genetic Engineering. , 2017, , 783-828.		1
179	Characterization of Glucokinase Catalysis from a Pseudo-Dimeric View. Applied Biochemistry and Biotechnology, 2019, 189, 345-358.	1.4	1
180	<i>A Special Issue on </i> The Biorefinery: Employing Biomass to Relieve Our Dependence on Fossil Sources. Journal of Biobased Materials and Bioenergy, 2008, 2, 97-99.	0.1	1

#	ARTICLE	IF	CITATIONS
181	Preparation of CoCuGaK/ZrO ₂ â€"Al ₂ O ₃ Catalysts for the Synthesis of Higher Alcohols by CO Hydrogenation. Journal of Biobased Materials and Bioenergy, 2017, 11, 449-455.	0.1	1
182	Lignin Reactions and Structural Alternations under Typical Biomass Pretreatment Methods. Current Organic Chemistry, 2019, 23, 2145-2154.	0.9	1
183	Ethanol production from hot-water sugar maple wood extract hydrolyzate: fermentation media optimization for Escherichia coli FBWHR. AIMS Environmental Science, 2015, 2, 269-281.	0.7	1
184	Impact of preparation <scp>pH</scp> and temperature on amino acid stability of highly concentrated cell culture feed media. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	1
185	Effect of Dispersion on Particle Segregation Due to Sparged Air in a Hydrocyclone. Canadian Journal of Chemical Engineering, 2003, 81, 549-556.	0.9	0
186	Batch Reactor., 2013,, 141-176.		0
187	Evolution and Genetic Engineering. , 2013, , 695-741.		0
188	An Overview of Chemical Reaction Analysis. , 2017, , 81-137.		0
189	Chemical Reactions on Solid Surfaces. , 2017, , 375-450.		0
190	Batch reactor. , 2020, , 109-140.		0
191	Molecular regulation. , 2020, , 401-451.		0
192	Evolution and genetic engineering. , 2020, , 513-544.		0