Suhelen Egan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8753921/publications.pdf

Version: 2024-02-01

126858 88593 5,278 76 33 70 citations h-index g-index papers 78 78 78 5893 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Differential priority effects impact taxonomy and functionality of hostâ€associated microbiomes. Molecular Ecology, 2023, 32, 6278-6293.	2.0	6
2	Bacterial controlled mitigation of dysbiosis in a seaweed disease. ISME Journal, 2022, 16, 378-387.	4.4	21
3	Cross-Host Protection of Marine Bacteria Against Macroalgal Disease. Microbial Ecology, 2022, 84, 1288-1293.	1.4	9
4	Pathogen exposure leads to a transcriptional downregulation of core cellular functions that may dampen the immune response in a macroalga. Molecular Ecology, 2022, 31, 3468-3480.	2.0	3
5	Epimicrobiome Shifts With Bleaching Disease Progression in the Brown Seaweed Saccharina japonica. Frontiers in Marine Science, 2022, 9, .	1.2	8
6	Opportunistic diseases in marine eukaryotes: Could Bacteroidota be the next threat to ocean life?. Environmental Microbiology, 2022, 24, 4505-4518.	1.8	18
7	Opportunities for microbiome research to enhance farmed freshwater fish quality and production. Reviews in Aquaculture, 2021, 13, 2027-2037.	4.6	11
8	Genomic Evolution of the Marine Bacterium Phaeobacter inhibens during Biofilm Growth. Applied and Environmental Microbiology, 2021, 87, e0076921.	1.4	3
9	Novel Nematode-Killing Protein-1 (Nkp-1) from a Marine Epiphytic Bacterium Pseudoalteromonas tunicata. Biomedicines, 2021, 9, 1586.	1.4	2
10	Age, gut location and diet impact the gut microbiome of a tropical herbivorous surgeonfish. FEMS Microbiology Ecology, 2020, 96, .	1.3	18
11	Novel multifunctional iron chelators of the aroyl nicotinoyl hydrazone class that markedly enhance cellular NAD + /NADH ratios. British Journal of Pharmacology, 2020, 177, 1967-1987.	2.7	7
12	Slr4, a newly identified Sâ€layer protein from marine Gammaproteobacteria, is a major biofilm matrix component. Molecular Microbiology, 2020, 114, 979-990.	1.2	4
13	Diet type influences the gut microbiome and nutrient assimilation of Genetically Improved Farmed Tilapia (Oreochromis niloticus). PLoS ONE, 2020, 15, e0237775.	1.1	32
14	Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms, 2020, 8, 1963.	1.6	10
15	Opportunities and Challenges to Microbial Symbiosis Research in the Microbiome Era. Frontiers in Microbiology, 2020, 11, 1150.	1.5	5
16	Diversity of the epiphytic bacterial communities associated with commercially cultivated healthy and diseased Saccharina japonica during the harvest season. Journal of Applied Phycology, 2020, 32, 2071-2080.	1.5	29
17	Revisiting Australian <i>Ectocarpus subulatus</i> (Phaeophyceae) From the Hopkins River: Distribution, Abiotic Environment, and Associated Microbiota. Journal of Phycology, 2020, 56, 719-729.	1.0	9
18	The effect of elevated pCO2 on cadmium resistance of a globally important diatom. Journal of Hazardous Materials, 2020, 396, 122749.	6.5	10

#	Article	IF	CITATIONS
19	Genome sequence of Epibacterium ulvae strain DSM 24752T, an indigoidine-producing, macroalga-associated member of the marine Roseobacter group. Environmental Microbiomes, 2019, 14, 4.	2.2	6
20	A horizon scan of priorities for coastal marine microbiome research. Nature Ecology and Evolution, 2019, 3, 1509-1520.	3.4	77
21	Tropodithietic acid induces oxidative stress response, cell envelope biogenesis and iron uptake in <i>Vibrio vulnificus</i> . Environmental Microbiology Reports, 2019, 11, 581-588.	1.0	12
22	Diversity and Distribution of Bacteria Producing Known Secondary Metabolites. Microbial Ecology, 2019, 78, 885-894.	1.4	4
23	Phaeobacter inhibens controls bacterial community assembly on a marine diatom. FEMS Microbiology Ecology, 2019, 95, .	1.3	24
24	Comparative genome analysis provides novel insight into the interaction of Aquimarina sp. AD1, BL5 and AD10 with their macroalgal host. Marine Genomics, 2019, 46, 8-15.	0.4	33
25	Diet and dietâ€nssociated bacteria shape early microbiome development in Yellowtail Kingfish (<i>Seriola lalandi</i>). Microbial Biotechnology, 2019, 12, 275-288.	2.0	68
26	Impact of <i>Phaeobacter inhibens</i> on marine eukaryoteâ€associated microbial communities. Environmental Microbiology Reports, 2019, 11, 401-413.	1.0	28
27	Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host–pathogen interaction. Molecular Ecology, 2018, 27, 1820-1832.	2.0	9
28	Causes and Consequences of a Variant Strain of Phaeobacter inhibens With Reduced Competition. Frontiers in Microbiology, 2018, 9, 2601.	1.5	11
29	Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria. ACS Infectious Diseases, 2017, 3, 237-248.	1.8	134
30	Microbial community function in the bleaching disease of the marine macroalgae <i>Delisea pulchra</i> . Environmental Microbiology, 2017, 19, 3012-3024.	1.8	42
31	Microbial Diversity and Symbiotic Interactions with Macroalgae. , 2017, , 493-546.		2
32	Exploring the Complexity of Macroalgal-Bacterial Interactions Through Interkingdom Signalling System., 2017,, 301-315.		1
33	Exoproteome Analysis of the Seaweed Pathogen Nautella italica R11 Reveals Temperature-Dependent Regulation of RTX-Like Proteins. Frontiers in Microbiology, 2017, 8, 1203.	1.5	8
34	Microbiome patterns across the gastrointestinal tract of the rabbitfish <i>Siganus fuscescens</i> PeerJ, 2017, 5, e3317.	0.9	60
35	Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems. Frontiers in Microbiology, 2016, 7, 991.	1.5	212
36	Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future. Marine Drugs, 2016, 14, 97.	2.2	101

#	Article	IF	CITATIONS
37	Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed <i>Delisea pulchra $\langle i \rangle$. Environmental Microbiology, 2016, 18, 3962-3975.</i>	1.8	113
38	Effect of interspecific competition on trait variation in <scp><i>P</i></scp> <i>haeobacter inhibens</i>	1.8	11
39	Caenorhabditis elegans employs innate and learned aversion in response to bacterial toxic metabolites tambjamine and violacein. Scientific Reports, 2016, 6, 29284.	1.6	19
40	Editorial for: Microbial symbiosis of marine sessile hosts-diversity and function. Frontiers in Microbiology, 2015, 6, 585.	1.5	7
41	VarR controls colonization and virulence in the marine macroalgal pathogen Nautella italica R11. Frontiers in Microbiology, 2015, 6, 1130.	1.5	19
42	A glutathione peroxidase (GpoA) plays a role in the pathogenicity of Nautella italica strain R11 towards the red alga Delisea pulchra. FEMS Microbiology Ecology, 2015, 91, .	1.3	24
43	A comprehensive analysis of the microbial communities of healthy and diseased marine macroalgae and the detection of known and potential bacterial pathogens. Frontiers in Microbiology, 2015, 6, 146.	1.5	102
44	Bacterial pathogens, virulence mechanism and host defence in marine macroalgae. Environmental Microbiology, 2014, 16, 925-938.	1.8	114
45	Antinematode Activity of Violacein and the Role of the Insulin/IGF-1 Pathway in Controlling Violacein Sensitivity in Caenorhabditis elegans. PLoS ONE, 2014, 9, e109201.	1.1	37
46	An ortholog of the Leptospira interrogans lipoprotein LipL32 aids in the colonization of Pseudoalteromonas tunicata to host surfaces. Frontiers in Microbiology, 2014, 5, 323.	1.5	9
47	The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiology Reviews, 2013, 37, 462-476.	3.9	560
48	Epibacterium ulvae gen. nov., sp. nov., epibiotic bacteria isolated from the surface of a marine alga. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1589-1596.	0.8	25
49	Assessing the Effectiveness of Functional Genetic Screens for the Identification of Bioactive Metabolites. Marine Drugs, 2013 , 11 , 40 - 49 .	2.2	16
50	Chemical Mediation of Ternary Interactions Between Marine Holobionts and Their Environment as Exemplified by the Red Alga Delisea pulchra. Journal of Chemical Ecology, 2012, 38, 442-450.	0.9	68
51	Identification of the Antibacterial Compound Produced by the Marine Epiphytic Bacterium Pseudovibrio sp. D323 and Related Sponge-Associated Bacteria. Marine Drugs, 2011, 9, 1391-1402.	2.2	82
52	Membrane proteins of <i>Pseudoalteromonas tunicata</i> during the transition from planktonic to extracellular matrixâ€adherent state. Environmental Microbiology Reports, 2011, 3, 405-413.	1.0	6
53	Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME Journal, 2010, 4, 1557-1567.	4.4	278
54	Identification of Compounds with Bioactivity against the Nematode <i>Caenorhabditis elegans</i> by a Screen Based on the Functional Genomics of the Marine Bacterium <i>Pseudoalteromonas tunicata</i> D2. Applied and Environmental Microbiology, 2010, 76, 5710-5717.	1.4	46

#	Article	IF	Citations
55	Development of Novel Drugs from Marine Surface Associated Microorganisms. Marine Drugs, 2010, 8, 438-459.	2.2	193
56	The genomic basis of trophic strategy in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15527-15533.	3.3	685
57	Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion. Nucleic Acids Research, 2009, 37, e144-e144.	6.5	16
58	Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiology Ecology, 2009, 69, 113-124.	1.3	113
59	Ecology of type II secretion in marine <i>gammaproteobacteria</i> . Environmental Microbiology, 2008, 10, 1101-1107.	1.8	36
60	Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Current Opinion in Microbiology, 2008, 11, 219-225.	2.3	183
61	Hydrogen Peroxide Linked to Lysine Oxidase Activity Facilitates Biofilm Differentiation and Dispersal in Several Gram-Negative Bacteria. Journal of Bacteriology, 2008, 190, 5493-5501.	1.0	119
62	LipL32 Is an Extracellular Matrix-Interacting Protein of <i>Leptospira</i> spp. and <i>Pseudoalteromonas tunicata</i> Infection and Immunity, 2008, 76, 2063-2069.	1.0	121
63	Marine Biofilm Bacteria Evade Eukaryotic Predation by Targeted Chemical Defense. PLoS ONE, 2008, 3, e2744.	1.1	176
64	Analysis of the Pseudoalteromonas tunicata Genome Reveals Properties of a Surface-Associated Life Style in the Marine Environment. PLoS ONE, 2008, 3, e3252.	1.1	126
65	Profiling the Secretome of the Marine Bacterium Pseudoalteromonas tunicata Using Amine-Specific Isobaric Tagging (iTRAQ). Journal of Proteome Research, 2007, 6, 967-975.	1.8	44
66	The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata. Environmental Microbiology, 2007, 9, 814-818.	1.8	63
67	A mannose-sensitive haemagglutinin (MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surface of the green alga Ulva australis. Microbiology (United Kingdom), 2006, 152, 2875-2883.	0.7	31
68	Unravelling the role of the ToxR-like transcriptional regulator WmpR in the marine antifouling bacterium Pseudoalteromonas tunicata. Microbiology (United Kingdom), 2006, 152, 1385-1394.	0.7	27
69	Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata. Molecules, 2005, 10, 1286-1291.	1.7	95
70	Biofilm Development and Cell Death in the Marine Bacterium Pseudoalteromonas tunicata. Applied and Environmental Microbiology, 2004, 70, 3232-3238.	1.4	120
71	Identification and Characterization of a Putative Transcriptional Regulator Controlling the Expression of Fouling Inhibitors in Pseudoalteromonas tunicata. Applied and Environmental Microbiology, 2002, 68, 372-378.	1.4	55
72	Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environmental Microbiology, 2002, 4, 433-442.	1.8	116

SUHELEN EGAN

#	Article	IF	CITATIONS
73	Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiology Ecology, 2002, 41, 47-58.	1.3	124
74	Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiology Ecology, 2001, 35, 67-73.	1.3	113
75	Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Brief report. Environmental Microbiology, 2000, 2, 343-347.	1.8	137
76	Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. , 0, .		4