Erik H Poelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8753532/publications.pdf

Version: 2024-02-01

108 4,831 38 papers citations h-index

115 115 115 3947 all docs docs citations times ranked citing authors

63

g-index

#	Article	IF	CITATIONS
1	Plasticity in induced resistance to sequential attack by multiple herbivores in Brassica nigra. Oecologia, 2022, 198, 11-20.	0.9	7
2	The Ecology of Hyperparasitoids. Annual Review of Entomology, 2022, 67, 143-161.	5.7	11
3	Impact of parasitoid-associated polydnaviruses on plant-mediated herbivore interactions. Current Opinion in Insect Science, 2022, 49, 56-62.	2.2	5
4	Plant defense strategies against attack by multiple herbivores. Trends in Plant Science, 2022, 27, 528-535.	4.3	23
5	Flowers prepare thyselves: leaf and root herbivores induce specific changes in floral phytochemistry with consequences for plant interactions with florivores. New Phytologist, 2022, 233, 2548-2560.	3.5	6
6	Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success. Environmental Pollution, 2021, 272, 115953.	3.7	21
7	Insect eggâ€killing: a new front on the evolutionary armsâ€race between brassicaceous plants and pierid butterflies. New Phytologist, 2021, 230, 341-353.	3.5	27
8	Insect species richness affects plant responses to multiâ€herbivore attack. New Phytologist, 2021, 231, 2333-2345.	3.5	14
9	Predictability of Biotic Stress Structures Plant Defence Evolution. Trends in Ecology and Evolution, 2021, 36, 444-456.	4.2	48
10	Intraspecific variation in plantâ€associated herbivore communities is phylogenetically structured in Brassicaceae. Ecology Letters, 2021, 24, 2314-2327.	3.0	8
11	Plantâ€phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars. Molecular Ecology, 2021, 30, 4567-4583.	2.0	7
12	The enemy of my enemy is not always my friend: Negative effects of carnivorous arthropods on plants. Functional Ecology, 2021, 35, 2365-2375.	1.7	10
13	Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Animal Microbiome, 2021, 3, 73.	1.5	12
14	Plant defence to sequential attack is adapted to prevalent herbivores. Nature Plants, 2021, 7, 1347-1353.	4.7	32
15	Plant age at the time of ozone exposure affects flowering patterns, biotic interactions and reproduction of wild mustard. Scientific Reports, 2021, 11, 23448.	1.6	5
16	Microbial Symbionts of Parasitoids. Annual Review of Entomology, 2020, 65, 171-190.	5.7	44
17	Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests. Pest Management Science, 2020, 76, 432-443.	1.7	39
18	Adverse weather conditions impede odor-guided foraging of parasitoids and reduce their host-finding success. Agriculture, Ecosystems and Environment, 2020, 301, 107066.	2.5	8

#	Article	IF	Citations
19	Adapted dandelions trade dispersal for germination upon root herbivore attack. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192930.	1.2	7
20	Spatial scale, neighbouring plants and variation in plant volatiles interactively determine the strength of host–parasitoid relationships. Oikos, 2020, 129, 1429-1439.	1.2	8
21	Gone with the wind: low availability of volatile information limits foraging efficiency in downwind-flying parasitoids. Animal Behaviour, 2020, 165, 59-70.	0.8	6
22	Plant ontogeny determines strength and associated plant fitness consequences of plantâ€mediated interactions between herbivores and flower visitors. Journal of Ecology, 2020, 108, 1046-1060.	1.9	15
23	Variation in parasitoid attraction to herbivore-infested plants and alternative host plant cover mediate tritrophic interactions at the landscape scale. Landscape Ecology, 2020, 35, 907-919.	1.9	6
24	Optimal plant defence under competition for light and nutrients: an evolutionary modelling approach. In Silico Plants, 2020, 2, .	0.8	4
25	Intraspecific variation in herbivoreâ€induced plant volatiles influences the spatial range of plant–parasitoid interactions. Oikos, 2019, 128, 77-86.	1.2	31
26	Settling on leaves or flowers: herbivore feeding site determines the outcome of indirect interactions between herbivores and pollinators. Oecologia, 2019, 191, 887-896.	0.9	10
27	Triâ€trophic interactions: bridging species, communities and ecosystems. Ecology Letters, 2019, 22, 2151-2167.	3.0	77
28	Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics, 2019, 15, 130.	1.4	29
29	Floral plasticity: Herbivoreâ€speciesâ€specificâ€induced changes in flower traits with contrasting effects on pollinator visitation. Plant, Cell and Environment, 2019, 42, 1882-1896.	2.8	55
30	Ecological significance of light quality in optimizing plant defence. Plant, Cell and Environment, 2019, 42, 1065-1077.	2.8	12
31	Crossâ€seasonal legacy effects of arthropod community on plant fitness in perennial plants. Journal of Ecology, 2019, 107, 2451-2463.	1.9	10
32	Ecology of Plastic Flowers. Trends in Plant Science, 2019, 24, 725-740.	4.3	38
33	Getting confused: learning reduces parasitoid foraging efficiency in some environments with non-host-infested plants. Oecologia, 2019, 189, 919-930.	0.9	12
34	Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity. Oecologia, 2019, 189, 699-709.	0.9	19
35	Plant-mediated effects of ozone on herbivores depend on exposure duration and temperature. Scientific Reports, 2019, 9, 19891.	1.6	14
36	Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems. Current Opinion in Insect Science, 2019, 32, 54-60.	2.2	36

#	Article	IF	Citations
37	Ecological interactions shape the adaptive value of plant defence: Herbivore attack versus competition for light. Functional Ecology, 2019, 33, 129-138.	1.7	28
38	Parasitic waspâ€associated symbiont affects plantâ€mediated species interactions between herbivores. Ecology Letters, 2018, 21, 957-967.	3.0	34
39	Female response to predation risk alters conspecific male behaviour during preâ€copulatory mate guarding. Ethology, 2018, 124, 122-130.	0.5	3
40	Associative learning of host presence in nonâ€host environments influences parasitoid foraging. Ecological Entomology, 2018, 43, 318-325.	1.1	7
41	Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling. Annals of Botany, 2018, 121, 1019-1031.	1.4	27
42	Dealing with mutualists and antagonists: Specificity of plantâ€mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Functional Ecology, 2018, 32, 1022-1035.	1.7	39
43	Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5205-5210.	3.3	54
44	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ \in evolutionary implications. New Phytologist, 2018, 220, 739-749.	3.5	101
45	Order of herbivore arrival on wild cabbage populations influences subsequent arthropod community development. Oikos, 2018, 127, 1482-1493.	1.2	30
46	Dynamic Plant–Plant–Herbivore Interactions Govern Plant Growth–Defence Integration. Trends in Plant Science, 2017, 22, 329-337.	4.3	40
47	Herbivoreâ€induced plant volatiles and tritrophic interactions across spatial scales. New Phytologist, 2017, 216, 1054-1063.	3.5	147
48	Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecology Letters, 2017, 20, 87-97.	3.0	50
49	Response of <i>Brassica oleracea </i> to temporal variation in attack by two herbivores affects preference and performance of a third herbivore. Ecological Entomology, 2017, 42, 803-815.	1.1	14
50	When does it pay off to prime for defense? A modeling analysis. New Phytologist, 2017, 216, 782-797.	3.5	39
51	Densityâ€mediated indirect interactions alter host foraging behaviour of parasitoids without altering foraging efficiency. Ecological Entomology, 2016, 41, 562-571.	1.1	6
52	Modification of plantâ€induced responses by an insect ecosystem engineer influences the colonization behaviour of subsequent shelterâ€users. Journal of Ecology, 2016, 104, 1096-1105.	1.9	20
53	Feeding guild of nonâ€host community members affects hostâ€foraging efficiency of a parasitic wasp. Ecology, 2016, 97, 1388-1399.	1.5	20
54	Development of a solitary koinobiont hyperparasitoid in different instars of its primary and secondary hosts. Journal of Insect Physiology, 2016, 90, 36-42.	0.9	5

#	Article	IF	CITATIONS
55	Herbivore species identity rather than diversity of the nonâ€host community determines foraging behaviour of the parasitoid wasp C otesia glomerata. Entomologia Experimentalis Et Applicata, 2016, 161, 20-30.	0.7	8
56	Plantâ€mediated interactions between two herbivores differentially affect a subsequently arriving third herbivore in populations of wild cabbage. Plant Biology, 2016, 18, 981-991.	1.8	31
57	Complexity of Plant Volatile-Mediated Interactions Beyond the Third Trophic Level. Signaling and Communication in Plants, 2016, , 211-225.	0.5	6
58	Intrinsic competition between primary hyperparasitoids of the solitary endoparasitoid <i><scp>C</scp>otesia rubecula</i> . Ecological Entomology, 2016, 41, 292-300.	1.1	4
59	Community structure and abundance of insects inÂresponse to earlyâ€season aphid infestation in wild cabbage populations. Ecological Entomology, 2016, 41, 378-388.	1.1	15
60	Flexible parasitoid behaviour overcomes constraint resulting from position of host and nonhost herbivores. Animal Behaviour, 2016, 113, 125-135.	0.8	13
61	Keystone Herbivores and the Evolution of Plant Defenses. Trends in Plant Science, 2016, 21, 477-485.	4.3	83
62	From induced resistance to defence in plantâ€insect interactions. Entomologia Experimentalis Et Applicata, 2015, 157, 11-17.	0.7	63
63	Early herbivore alert matters: plantâ€mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecology Letters, 2015, 18, 927-936.	3.0	45
64	Fitness consequences of indirect plant defence in the annual weed, <i><scp>S</scp>inapis arvensis</i> . Functional Ecology, 2015, 29, 1019-1025.	1.7	45
65	Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. Environmental Pollution, 2015, 199, 119-129.	3.7	39
66	Altered Volatile Profile Associated with Precopulatory Mate Guarding Attracts Spider Mite Males. Journal of Chemical Ecology, 2015, 41, 187-193.	0.9	9
67	Editorial overview: Ecology: Ecology of plant insect interactions: the role of plant chemistry. Current Opinion in Insect Science, 2015, 8, iv-vi.	2.2	0
68	Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivoreâ€induced plant volatiles. Molecular Ecology, 2015, 24, 2886-2899.	2.0	40
69	Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids. Oecologia, 2015, 177, 701-713.	0.9	75
70	Food plant and herbivore host species affect the outcome of intrinsic competition among parasitoid larvae. Ecological Entomology, 2014, 39, 693-702.	1.1	33
71	Body Odors of Parasitized Caterpillars Give Away the Presence of Parasitoid Larvae to Their Primary Hyperparasitoid Enemies. Journal of Chemical Ecology, 2014, 40, 986-995.	0.9	22
72	Caught between Parasitoids and Predators – Survival of a Specialist Herbivore on Leaves and Flowers of Mustard Plants. Journal of Chemical Ecology, 2014, 40, 621-631.	0.9	31

#	Article	IF	Citations
73	Plant Interactions with Multiple Insect Herbivores: From Community to Genes. Annual Review of Plant Biology, 2014, 65, 689-713.	8.6	361
74	Insect herbivoreâ€associated organisms affect plant responses to herbivory. New Phytologist, 2014, 204, 315-321.	3.5	78
75	Foraging behaviour by parasitoids in multiherbivore communities. Animal Behaviour, 2013, 85, 1517-1528.	0.8	98
76	A test of genotypic variation in specificity of herbivore-induced responses in Solidago altissima L. (Asteraceae). Oecologia, 2013, 173, 1387-1396.	0.9	48
77	New Synthesis: Volatiles Bring out the Animal in Plants. Journal of Chemical Ecology, 2013, 39, 1055-1055.	0.9	1
78	Intrinsic Inter- and Intraspecific Competition in Parasitoid Wasps. Annual Review of Entomology, 2013, 58, 333-351.	5.7	247
79	Variation in herbivoreâ€induced plant volatiles corresponds with spatial heterogeneity in the level of parasitoid competition and parasitoid exposure to hyperparasitism. Functional Ecology, 2013, 27, 1107-1116.	1.7	32
80	Amazon poison frogs (Ranitomeya amazonica) use different phytotelm characteristics to determine their suitability for egg and tadpole deposition. Evolutionary Ecology, 2013, 27, 661-674.	0.5	29
81	Induced plant responses to microbes and insects. Frontiers in Plant Science, 2013, 4, 475.	1.7	42
82	Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host. PLoS Biology, 2012, 10, e1001435.	2.6	168
83	Dynamics of plant secondary metabolites and consequences for food chains and community dynamics. , 2012, , 308-328.		4
84	Plants under multiple herbivory: consequences for parasitoid search behaviour and foraging efficiency. Animal Behaviour, 2012, 83, 501-509.	0.8	46
85	A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa, 2011, 3083, 1.	0.2	106
86	Indirect plant-mediated interactions among parasitoid larvae. Ecology Letters, 2011, 14, 670-676.	3.0	38
87	Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea. Functional Ecology, 2011, 25, 1113-1124.	1.7	51
88	Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19647-19652.	3.3	82
89	Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia, 2010, 162, 393-404.	0.9	64
90	The Herbivore-Induced Plant Volatile Methyl Salicylate Negatively Affects Attraction of the Parasitoid Diadegma semiclausum. Journal of Chemical Ecology, 2010, 36, 479-489.	0.9	77

#	Article	IF	Citations
91	Development and host utilization in Hyposoter ebeninus (Hymenoptera: Ichneumonidae), a solitary endoparasitoid of Pieris rapae and P. brassicae caterpillars (Lepidoptera: Pieridae). Biological Control, 2010, 53, 312-318.	1.4	24
92	Intraspecific variation in herbivore community composition and transcriptional profiles in field-grown Brassica oleracea cultivars. Journal of Experimental Botany, 2010, 61, 807-819.	2.4	29
93	Descriptions of the Tadpoles of Two Poison Frogs, Ameerega parvula and Ameerega bilinguis (Anura:) Tj ETQq1 I	0.784314	rgBT /Overl
94	Herbivoreâ€induced plant responses in <i>Brassica oleracea</i> prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecological Entomology, 2010, 35, 240-247.	1.1	91
95	Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia, 2009, 160, 299-308.	0.9	106
96	Field parasitism rates of caterpillars on <i>Brassica oleracea </i> plants are reliably predicted by differential attraction of <i>Cotesia</i> parasitoids. Functional Ecology, 2009, 23, 951-962.	1.7	87
97	Chemical diversity in <i>Brassica oleracea</i> affects biodiversity of insect herbivores. Ecology, 2009, 90, 1863-1877.	1.5	120
98	Performance of specialist and generalist herbivores feeding on cabbage cultivars is not explained by glucosinolate profiles. Entomologia Experimentalis Et Applicata, 2008, 127, 218-228.	0.7	103
99	Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Molecular Ecology, 2008, 17, 3352-3365.	2.0	214
100	Responses of <i>Brassica oleracea</i> cultivars to infestation by the aphid <i>Brevicoryne brassicae</i> : an ecological and molecular approach. Plant, Cell and Environment, 2008, 31, 1592-1605.	2.8	63
101	Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends in Plant Science, 2008, 13, 534-541.	4.3	160
102	Space Use of Amazonian Poison Frogs: Testing the Reproductive Resource Defense Hypothesis. Journal of Herpetology, 2008, 42, 270-278.	0.2	27
103	Genotypic variation in genome-wide transcription profiles induced by insect feeding: Brassica oleracea – Pieris rapae interactions. BMC Genomics, 2007, 8, 239.	1.2	7 5
104	Offering offspring as food to cannibals: oviposition strategies of Amazonian poison frogs (Dendrobates ventrimaculatus). Evolutionary Ecology, 2007, 21, 215-227.	0.5	70
105	A new species of Colostethus (Anura, Dendrobatidae) from French Guiana with a redescription of Colostethus beebei (Noble, 1923) from its type locality. Phyllomedusa, 2006, 5, 43.	0.2	43
106	Consistent feeding positions of great tit parents. Animal Behaviour, 2006, 72, 1249-1257.	0.8	21
107	Dicyphus predatory bugs pre-established on tomato plants reduce Nesidiocoris tenuis population growth. Journal of Pest Science, 0 , 1 .	1.9	5
108	Evolution of koinobiont parasitoid host regulation and consequences for indirect plant defence. Evolutionary Ecology, 0, , 1.	0.5	7