
Zbigniew K Leciejewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8752684/publications.pdf Version: 2024-02-01

7RICHIEW KLECIEIEWSKI

#	Article	IF	CITATIONS
1	Investigations of Middle-Caliber Anti-Aircraft Cannon Interior Ballistics including Heat Transfer Problem in Estimation of Critical Burst Length. Processes, 2022, 10, 607.	2.8	7
2	Determining the Burning Rate of Fine-Grained Propellants in Closed Vessel Tests. Energies, 2022, 15, 2680.	3.1	4
3	Investigations on influence of rifle automatics system action on values of energetic efficiency coefficient of muzzle brakes. Defence Technology, 2021, , .	4.2	0
4	Analysis of Application of Plasma Ignition in Closed Vessel Tests. Energies, 2021, 14, 6377.	3.1	0
5	On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests. Materials, 2020, 13, 3243.	2.9	9
6	Ballistic Analysis of Missile Propulsion in a Perforated Barrel Launcher. Central European Journal of Energetic Materials, 2020, 17, 475-491.	0.4	1
7	Preliminary analysis of ballistic requirements for LOVA propellants for new generation tank ammunition. MateriaÅ,y Wysokoenergetyczne / High Energy Materials, 2020, , 144-157.	0.2	Ο
8	Theoretical and experimental investigations on a rocket propulsion system of projectiles intended for vehicle active protection system. MateriaÅ,y Wysokoenergetyczne / High Energy Materials, 2020, , 133-143.	0.2	0
9	INFLUENCE OF HEAT LOSSES CORRECTION ON POWDER CHARACTERISTICS DETERMINED IN PYROSTATIC INVESTIGATIONS. Problemy Techniki Uzbrojenia I Radiolokacji, 2020, 151, 7-20.	0.2	Ο
10	Comparative analysis of the effects of gunpowder and plasma ignition in closed vessel tests. Defence Technology, 2019, 15, 668-673.	4.2	6
11	On a Certain Method of Determining the Burning Rate of Gun Propellant. Central European Journal of Energetic Materials, 2019, 16, 433-448.	0.4	7
12	Investigations of the Influence of Ignition on the Dynamic Vivacity of Propellants. Problems of Mechatronics Armament Aviation Safety Engineering, 2019, 9, 1-14.	0.2	2
13	Use of Standard Meteorological Messages to Simulate the Flight of 35 mm TP-T Projectile Under Actual Conditions. Problems of Mechatronics Armament Aviation Safety Engineering, 2019, 10, 59-74.	0.2	Ο
14	Trends in the development of propellants regarding the demands of future firearms. MateriaÅ,y Wysokoenergetyczne / High Energy Materials, 2019, , 23-30.	0.2	0
15	Ballistic Analysis of Polish Low-Vulnerability Gun Propellants. Problems of Mechatronics Armament Aviation Safety Engineering, 2018, 9, 71-88.	0.2	2
16	Heat Transfer Calculations in Barrel Cover of 35 mm Naval Armament System Gun. Problems of Mechatronics Armament Aviation Safety Engineering, 2018, 9, 53-70.	0.2	4
17	PYROSTATIC TESTS OF JA-2 TYPE POWDER. Problemy Techniki Uzbrojenia I Radiolokacji, 2017, , 7-23.	0.2	4
18	CONCEPT OF MAGNETO-HYDRODYNAMIC PLASMA IGNITER FOR IGNITION OF LOW VULNERABILITY GUN PROPELLANTS. Problemy Techniki Uzbrojenia I Radiolokacji, 2017, , 17-28.	0.2	0

#	Article	IF	CITATIONS
19	Analysis of Heat Transfer in a 35 mm Barrel of an Anti-Aircraft Cannon. Problems of Mechatronics Armament Aviation Safety Engineering, 2016, 7, 71-86.	0.2	8
20	Modelling and Verification of Solid Propellant Rocket Motor Operation. Central European Journal of Energetic Materials, 2016, 13, 944-956.	0.4	0
21	Closed Vessel Investigation of Propellant Ignition Process with Using Capillary Plasma Generator. Problems of Mechatronics Armament Aviation Safety Engineering, 2015, 6, 19-26.	0.2	7
22	Effect of application of various ignition conditions in closed-vessel tests on burning rate calculation of a fine-grained propellant. Combustion, Explosion and Shock Waves, 2011, 47, 209-216.	0.8	11