
## Sabine Julia Seidel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8752663/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The effect of deep tillage on crop yield – What do we really know?. Soil and Tillage Research, 2017, 174,<br>193-204.                                                                                      | 2.6 | 210       |
| 2  | Towards improved calibration of crop models – Where are we now and where should we go?.<br>European Journal of Agronomy, 2018, 94, 25-35.                                                                  | 1.9 | 113       |
| 3  | Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models. Soil and Tillage Research, 2018, 180, 210-221.                           | 2.6 | 43        |
| 4  | Implementation and Application of a Root Growth Module in HYDRUS. Vadose Zone Journal, 2018, 17, 1-16.                                                                                                     | 1.3 | 42        |
| 5  | Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop<br>Model PILOTE and Hydrus-2D. Agricultural Water Management, 2011, 98, 1033-1044.                   | 2.4 | 41        |
| 6  | Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. Journal of Plant<br>Nutrition and Soil Science, 2019, 182, 945-952.                                                       | 1.1 | 36        |
| 7  | The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise.<br>Environmental Modelling and Software, 2021, 145, 105206.                                                 | 1.9 | 31        |
| 8  | How well do crop modeling groups predict wheat phenology, given calibration data from the target population?. European Journal of Agronomy, 2021, 124, 126195.                                             | 1.9 | 27        |
| 9  | Field Evaluation of Irrigation Scheduling Strategies using a Mechanistic Crop Growth Model.<br>Irrigation and Drainage, 2016, 65, 214-223.                                                                 | 0.8 | 22        |
| 10 | Modelling the impact of drought and heat stress on common bean with two different photosynthesis model approaches. Environmental Modelling and Software, 2016, 81, 111-121.                                | 1.9 | 22        |
| 11 | Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images.<br>Sensors, 2020, 20, 5893.                                                                              | 2.1 | 22        |
| 12 | Impact of irrigation on plant growth and development of white cabbage. Agricultural Water<br>Management, 2017, 187, 99-111.                                                                                | 2.4 | 19        |
| 13 | Multi-model evaluation of phenology prediction for wheat in Australia. Agricultural and Forest<br>Meteorology, 2021, 298-299, 108289.                                                                      | 1.9 | 17        |
| 14 | Optimal Irrigation Scheduling, Irrigation Control and Drip Line Layout to Increase Water Productivity<br>and Profit in Subsurface Dripâ€Irrigated Agriculture. Irrigation and Drainage, 2015, 64, 501-518. | 0.8 | 16        |
| 15 | Sugar Beet Shoot and Root Phenotypic Plasticity to Nitrogen, Phosphorus, Potassium and Lime<br>Omission. Agriculture (Switzerland), 2021, 11, 21.                                                          | 1.4 | 16        |
| 16 | Nutrient supply affects the yield stability of major European crops—a 50 year study. Environmental<br>Research Letters, 2021, 16, 014003.                                                                  | 2.2 | 15        |
| 17 | The influence of climate variability, soil and sowing date on simulation-based crop coefficient curves and irrigation water demand. Agricultural Water Management, 2019, 221, 73-83.                       | 2.4 | 13        |
| 18 | Investigation of deficit irrigation strategies combining SVAT-modeling, optimization and experiments.<br>Environmental Earth Sciences, 2014, 72, 4901-4915.                                                | 1.3 | 10        |

| #  | Article                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Irrigation water demand of common bean on field and regional scale under varying climatic conditions. Meteorologische Zeitschrift, 2016, 25, 365-375. | 0.5 | 4         |
| 20 | EVALUATION OF THE TRANSFERABILITY OF A SVAT MODEL––RESULTS FROM FIELD AND GREENHOUSE APPLICATIONS. Irrigation and Drainage, 2011, 60, 59-70.          | 0.8 | 3         |