Yuri Aikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8752596/publications.pdf

Version: 2024-02-01

71102 91884 5,325 104 41 69 citations h-index g-index papers 106 106 106 2555 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The ALMA Survey of 70 î¼m Dark High-mass Clumps in Early Stages (ASHES). V. Deuterated Molecules in the 70 î¼m Dark IRDC G14.492-00.139. Astrophysical Journal, 2022, 925, 144.	4.5	12
2	Thermal Desorption of Interstellar Ices: A Review on the Controlling Parameters and Their Implications from Snowlines to Chemical Complexity. ACS Earth and Space Chemistry, 2022, 6, 597-630.	2.7	55
3	Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623–2417: FAUST. III. Astrophysical Journal, 2022, 927, 54.	4.5	7
4	Diffusion Activation Energy and Desorption Activation Energy for Astrochemically Relevant Species on Water Ice Show No Clear Relation. Astrophysical Journal Letters, 2022, 933, L16.	8.3	11
5	FAUST. II. Discovery of a Secondary Outflow in IRAS 15398â^3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?. Astrophysical Journal, 2021, 910, 11.	4.5	19
6	High Spatial Resolution Observations of Molecular Lines toward the Protoplanetary Disk around TW Hya with ALMA. Astrophysical Journal, 2021, 914, 113.	4.5	14
7	Photoevaporation of Grain-depleted Protoplanetary Disks around Intermediate-mass Stars: Investigating the Possibility of Gas-rich Debris Disks as Protoplanetary Remnants. Astrophysical Journal, 2021, 915, 90.	4.5	14
8	The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars. Astrophysical Journal, 2021, 920, 119.	4.5	22
9	Molecules with ALMA at Planet-forming Scales (MAPS). VII. Substellar O/H and C/H and Superstellar C/O in Planet-feeding Gas. Astrophysical Journal, Supplement Series, 2021, 257, 7.	7.7	40
10	Molecules with ALMA at Planet-forming Scales (MAPS). X. Studying Deuteration at High Angular Resolution toward Protoplanetary Disks. Astrophysical Journal, Supplement Series, 2021, 257, 10.	7.7	15
11	Molecules with ALMA at Planet-forming Scales (MAPS). XVIII. Kinematic Substructures in the Disks of HD 163296 and MWC 480. Astrophysical Journal, Supplement Series, 2021, 257, 18.	7.7	51
12	Molecules with ALMA at Planet-forming Scales (MAPS). IX. Distribution and Properties of the Large Organic Molecules HC ₃ N, CH ₃ CN, and c-C ₃ H ₂ . Astrophysical Journal, Supplement Series, 2021, 257, 9.	7.7	30
13	Molecules with ALMA at Planet-forming Scales (MAPS). XIX. Spiral Arms, a Tail, and Diffuse Structures Traced by CO around the GM Aur Disk. Astrophysical Journal, Supplement Series, 2021, 257, 19.	7.7	33
14	Molecules with ALMA at Planet-forming Scales (MAPS). IV. Emission Surfaces and Vertical Distribution of Molecules. Astrophysical Journal, Supplement Series, 2021, 257, 4.	7.7	58
15	Molecules with ALMA at Planet-forming Scales (MAPS). XII. Inferring the C/O and S/H Ratios in Protoplanetary Disks with Sulfur Molecules. Astrophysical Journal, Supplement Series, 2021, 257, 12.	7.7	30
16	Molecules with ALMA at Planet-forming Scales (MAPS). XVII. Determining the 2D Thermal Structure of the HD 163296 Disk. Astrophysical Journal, Supplement Series, 2021, 257, 17.	7.7	19
17	Molecules with ALMA at Planet-forming Scales (MAPS). I. Program Overview and Highlights. Astrophysical Journal, Supplement Series, 2021, 257, 1.	7.7	117
18	Molecules with ALMA at Planet-forming Scales (MAPS). VI. Distribution of the Small Organics HCN, C ₂ H, and H ₂ CO. Astrophysical Journal, Supplement Series, 2021, 257, 6.	7.7	37

#	Article	IF	CITATIONS
19	Molecules with ALMA at Planet-forming Scales (MAPS). XVI. Characterizing the Impact of the Molecular Wind on the Evolution of the HD 163296 System. Astrophysical Journal, Supplement Series, 2021, 257, 16.	7.7	20
20	Molecules with ALMA at Planet-forming Scales (MAPS). V. CO Gas Distributions. Astrophysical Journal, Supplement Series, 2021, 257, 5.	7.7	87
21	Molecules with ALMA at Planet-forming Scales (MAPS). III. Characteristics of Radial Chemical Substructures. Astrophysical Journal, Supplement Series, 2021, 257, 3.	7.7	57
22	Molecules with ALMA at Planet-forming Scales (MAPS). XV. Tracing Protoplanetary Disk Structure within 20 au. Astrophysical Journal, Supplement Series, 2021, 257, 15.	7.7	21
23	Molecules with ALMA at Planet-forming Scales (MAPS). VIII. CO Gap in AS 209â€"Gas Depletion or Chemical Processing?. Astrophysical Journal, Supplement Series, 2021, 257, 8.	7.7	22
24	Molecules with ALMA at Planet-forming Scales (MAPS). XIII. HCO ⁺ and Disk Ionization Structure. Astrophysical Journal, Supplement Series, 2021, 257, 13.	7.7	24
25	Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in Multiwavelength Continuum Emission. Astrophysical Journal, Supplement Series, 2021, 257, 14.	7.7	56
26	Molecules with ALMA at Planet-forming Scales. XX. The Massive Disk around GM Aurigae. Astrophysical Journal, Supplement Series, 2021, 257, 20.	7.7	26
27	Molecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN Strategies for Synthesizing Images of Molecular Line Emission in Protoplanetary Disks. Astrophysical Journal, Supplement Series, 2021, 257, 2.	7.7	58
28	Molecules with ALMA at Planet-forming Scales (MAPS). XI. CN and HCN as Tracers of Photochemistry in Disks. Astrophysical Journal, Supplement Series, 2021, 257, 11.	7.7	25
29	The Circumstellar Environment around the Embedded Protostar EC 53. Astrophysical Journal, 2020, 889, 20.	4.5	14
30	Chemistry and Physics of a Low-metallicity Hot Core in the Large Magellanic Cloud. Astrophysical Journal, 2020, 891, 164.	4.5	14
31	Disk Structure around the Class I Protostar L1489 IRS Revealed by ALMA: A Warped-disk System. Astrophysical Journal, 2020, 893, 51.	4.5	24
32	Chemical Variation among Protostellar Cores: Dependence on Prestellar Core Conditions. Astrophysical Journal, 2020, 897, 110.	4.5	31
33	Sulfur-bearing Species Tracing the Disk/Envelope System in the Class I Protostellar Source Elias 29. Astrophysical Journal, 2019, 881, 112.	4.5	25
34	First-Principles Study of the Reaction Mechanism of CHO + H on Graphene Surface. Journal of Physical Chemistry A, 2019, 123, 5633-5639.	2.5	3
35	Molecular-cloud-scale Chemical Composition. III. Constraints of Average Physical Properties through Chemical Models. Astrophysical Journal, 2019, 871, 238.	4.5	17
36	Gas-dust chemistry of volatiles in the star and planetary system formation. Proceedings of the International Astronomical Union, 2019, 15, 161-168.	0.0	0

#	Article	IF	CITATIONS
37	Protostellar Evolution in Serpens Main: Possible Origin of Disk-size Diversity. Astrophysical Journal, 2019, 887, 209.	4.5	12
38	H ₂ Ortho–Para Spin Conversion on Inhomogeneous Grain Surfaces. Astrophysical Journal, 2019, 882, 172.	4.5	10
39	Theoretical study of the photodissociation reaction of methanol. Chemical Physics Letters, 2019, 714, 137-142.	2.6	8
40	The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nature Astronomy, 2019, 3, 314-319.	10.1	87
41	The TOP-SCOPE Survey of <i>Planck</i> Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17. Astrophysical Journal, Supplement Series, 2018, 234, 28.	7.7	50
42	First-principles study of the formation of glycine-producing radicals from common interstellar species. Molecular Astrophysics, 2018, 10, 11-19.	1.6	22
43	Depletion of Heavy Nitrogen in the Cold Gas of Star-forming Regions. Astrophysical Journal, 2018, 857, 105.	4.5	33
44	Multiple Paths of Deuterium Fractionation in Protoplanetary Disks. Astrophysical Journal, 2018, 855, 119.	4.5	27
45	The Distribution and Excitation of CH ₃ CN in a Solar Nebula Analog. Astrophysical Journal, 2018, 859, 131.	4.5	65
46	A Multiline Study of a High-mass Young Stellar Object in the Small Magellanic Cloud with ALMA: The Detection of Methanol Gas at 0.2 Solar Metallicity. Astrophysical Journal, 2018, 862, 102.	4.5	8
47	Molecular Composition of Local Dwarf Galaxies: Astrochemistry in Low-metallicity Environments. Proceedings of the International Astronomical Union, 2018, 14, 182-185.	0.0	0
48	The Chemical Evolution from Prestellar to Protostellar Cores: A New Multiphase Model with Bulk Diffusion and Photon Penetration. Astrophysical Journal, 2018, 869, 165.	4.5	9
49	The Distinct Evolutionary Nature of Two Class 0 Protostars in Serpens Main SMM4. Astrophysical Journal, 2018, 863, 19.	4.5	9
50	ALMA Observations of the IRDC Clump G34.43+00.24 MM3: Complex Organic and Deuterated Molecules. Astrophysical Journal, 2018, 857, 35.	4.5	19
51	The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months. Astrophysical Journal, 2018, 854, 31.	4.5	38
52	Effects of Grain Growth on Molecular Abundances in Young Stellar Objects. Astrophysical Journal, 2017, 837, 78.	4.5	12
53	L483: Warm Carbon-chain Chemistry Source Harboring Hot Corino Activity. Astrophysical Journal, 2017, 837, 174.	4. 5	78
54	A theoretical study of the formation of glycine via hydantoin intermediate in outer space environment. Chemical Physics Letters, 2017, 687, 178-183.	2.6	22

#	Article	IF	CITATIONS
55	Molecular-cloud-scale Chemical Composition. II. Mapping Spectral Line Survey toward W3(OH) in the 3 mm Band. Astrophysical Journal, 2017, 848, 17.	4.5	29
56	An ALMA Survey of DCN/H $<$ sup $>$ 13 $<$ /sup $>$ CN and DCO $<$ sup $>+<$ /sup $>$ /H $<$ sup $>$ 13 $<$ /sup $>$ CO $<$ sup $>+<$ /sup $>$ in Protoplanetary Disks. Astrophysical Journal, 2017, 835, 231.	4.5	87
57	Vertical structure of the transition zone from infalling rotating envelope to disc in the Class 0 protostar, IRAS 04368+2557. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 467, L76-L80.	3.3	35
58	ALMA Observations of the Protostar L1527 IRS: Probing Details of the Disk and the Envelope Structures. Astrophysical Journal, 2017, 849, 56.	4.5	52
59	Molecular-cloud-scale Chemical Composition. I. A Mapping Spectral Line Survey toward W51 in the 3 mm Band. Astrophysical Journal, 2017, 845, 116.	4.5	30
60	How Do Stars Gain Their Mass? A JCMT/SCUBA-2 Transient Survey of Protostars in Nearby Star-forming Regions. Astrophysical Journal, 2017, 849, 43.	4.5	42
61	The JCMT Transient Survey: Identifying Submillimeter Continuum Variability over Several Year Timescales Using Archival JCMT Gould Belt Survey Observations. Astrophysical Journal, 2017, 849, 107.	4.5	18
62	ALMA Observations of SMM11 Reveal an Extremely Young Protostar in Serpens Main Cluster. Astrophysical Journal Letters, 2017, 850, L2.	8.3	10
63	ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK. Astrophysical Journal, 2016, 831, 200.	4.5	42
64	DISCOVERY OF A HOT CORINO IN THE BOK GLOBULE B335. Astrophysical Journal Letters, 2016, 830, L37.	8.3	80
65	CHEMISTRY IN A FORMING PROTOPLANETARY DISK: MAIN ACCRETION PHASE. Astrophysical Journal, 2016, 833, 105.	4.5	41
66	THE DETECTION OF A HOT MOLECULAR CORE IN THE LARGE MAGELLANIC CLOUD WITH ALMA. Astrophysical Journal, 2016, 827, 72.	4.5	35
67	SUBARCSECOND ANALYSIS OF THEÂINFALLING–ROTATING ENVELOPE AROUND THE CLASS I PROTOSTAR IRAS 04365+2535. Astrophysical Journal Letters, 2016, 820, L34.	8.3	52
68	SPECTRAL LINE SURVEY TOWARD MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD. Astrophysical Journal, 2016, 818, 161.	4.5	27
69	SPECTRAL LINE SURVEY TOWARD A MOLECULAR CLOUD IN IC10. Astrophysical Journal, 2016, 829, 94.	4.5	25
70	FIRST DETECTION OF GAS-PHASE METHANOL IN A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 823, L10.	8.3	166
71	ALMA OBSERVATIONS OF THE TRANSITION FROM INFALL MOTION TO KEPLERIAN ROTATION AROUND THE LATE-PHASE PROTOSTAR TMC-1A. Astrophysical Journal, 2015, 812, 27.	4.5	87
72	DOUBLE DCO ⁺ RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP. Astrophysical Journal, 2015, 810, 112.	4.5	83

#	Article	IF	CITATIONS
73	EVIDENCE FOR DCO ⁺ AS A PROBE OF IONIZATION IN THE WARM DISK SURFACE. Astrophysical Journal Letters, 2015, 802, L23.	8.3	28
74	Astrochemical models of water. Proceedings of the International Astronomical Union, 2015, 11, 380-384.	0.0	0
75	Evaporation of grain-surface species by shock waves onto a forming protoplanetary disk. Proceedings of the International Astronomical Union, 2015, 11 , .	0.0	0
76	SMA and ALMA studies of protoplanetary disk formation around low-mass protostars. Proceedings of the International Astronomical Union, 2015, 11, 126-129.	0.0	0
77	EVAPORATION OF GRAIN-SURFACE SPECIES BY SHOCK WAVES IN A PROTOPLANETARY DISK. Astrophysical Journal, 2015, 799, 141.	4.5	26
78	The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature, 2015, 520, 198-201.	27.8	192
79	ALMA OBSERVATIONS OF THE IRDC CLUMP G34.43+00.24 MM3: DNC/HNC RATIO. Astrophysical Journal, 2015, 803, 70.	4.5	13
80	ANALYTICAL FORMULAE OF MOLECULAR ION ABUNDANCES AND THE N ₂ H ⁺ RING IN PROTOPLANETARY DISKS. Astrophysical Journal, 2015, 807, 120.	4.5	49
81	ALMA OBSERVATIONS OF THE IRDC CLUMP G34.43+00.24 MM3: 278 GHz CLASS I METHANOL MASERS. Astrophysical Journal Letters, 2014, 794, L10.	8.3	20
82	ALMA HINTS AT THE PRESENCE OF TWO COMPANIONS IN THE DISK AROUND HD 100546. Astrophysical Journal Letters, 2014, 791, L6.	8.3	114
83	A CHEMICAL VIEW OF PROTOSTELLAR-DISK FORMATION IN L1527. Astrophysical Journal Letters, 2014, 791, L38.	8.3	93
84	FORMATION OF A KEPLERIAN DISK IN THE INFALLING ENVELOPE AROUND L1527 IRS: TRANSFORMATION FROM INFALLING MOTIONS TO KEPLER MOTIONS. Astrophysical Journal, 2014, 796, 131.	4.5	166
85	ALMA OBSERVATIONS OF INFALLING FLOWS TOWARD THE KEPLERIAN DISK AROUND THE CLASS I PROTOSTAR L1489 IRS. Astrophysical Journal, 2014, 793, 1.	4.5	99
86	Change in the chemical composition of infalling gas forming a disk around a protostar. Nature, 2014, 507, 78-80.	27.8	196
87	REPROCESSING OF ICES IN TURBULENT PROTOPLANETARY DISKS: CARBON AND NITROGEN CHEMISTRY. Astrophysical Journal, 2014, 790, 97.	4.5	100
88	Complex organic molecules in protoplanetary disks. Astronomy and Astrophysics, 2014, 563, A33.	5.1	169
89	Interplay of Chemistry and Dynamics in the Low-Mass Star Formation. Chemical Reviews, 2013, 113, 8961-8980.	47.7	15
90	WATER IN PROTOPLANETARY DISKS: DEUTERATION AND TURBULENT MIXING. Astrophysical Journal, 2013, 779, 11.	4.5	80

#	Article	IF	CITATIONS
91	CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION. Astrophysical Journal, 2012, 747, 114.	4.5	123
92	CHEMISTRY IN THE FIRST HYDROSTATIC CORE STAGE BY ADOPTING THREE-DIMENSIONAL RADIATION HYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2012, 758, 86.	4.5	37
93	CARBON-CHAIN AND ORGANIC MOLECULES AROUND VERY LOW LUMINOSITY PROTOSTELLAR OBJECTS OF L1521F-IRS AND IRAM 04191+1522. Astrophysical Journal, 2011, 728, 101.	4.5	6
94	CARBON ISOTOPE AND ISOTOPOMER FRACTIONATION IN COLD DENSE CLOUD CORES. Astrophysical Journal, 2011, 731, 38.	4.5	41
95	Molecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores. Astrophysical Journal, 2008, 674, 984-996.	4.5	195
96	Resolving the Chemistry in the Disk of TW Hydrae. I. Deuterated Species. Astrophysical Journal, 2008, 681, 1396-1407.	4.5	107
97	Cold CO Gas in Protoplanetary Disks. Astrophysical Journal, 2007, 656, L93-L96.	4.5	31
98	Molecular Evolution in Collapsing Prestellar Cores. III. Contraction of a Bonnorâ€Ebert Sphere. Astrophysical Journal, 2005, 620, 330-346.	4.5	179
99	Interferometric Observations of Formaldehyde in the Protoplanetary Disk around LkCa 15. Publication of the Astronomical Society of Japan, 2003, 55, 11-15.	2.5	51
100	Molecular Evolution in Collapsing Prestellar Cores. Astrophysical Journal, 2001, 552, 639-653.	4.5	193
101	Deuterium Fractionation in Protoplanetary Disks. Astrophysical Journal, 1999, 526, 314-326.	4. 5	131
102	Evolution of Molecular Abundances in Protoplanetary Disks with Accretion Flow. Astrophysical Journal, 1999, 519, 705-725.	4. 5	106
103	Evolution of Molecular Abundance in Protoplanetary Disks. Astrophysical Journal, 1997, 486, L51-L54.	4.5	101
104	Evolution of Molecular Abundance in Gaseous Disks around Young Stars: Depletion of CO Molecules. Astrophysical Journal, 1996, 467, 684.	4. 5	106