
Darrell Kirk Nordstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8752522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PUBLIC HEALTH: Enhanced: Worldwide Occurrences of Arsenic in Ground Water. Science, 2002, 296, 2143-2145.	6.0	1,405
2	Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 2011, 26, 1777-1791.	1.4	358
3	Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, 2015, 57, 3-16.	1.4	357
4	Thermochemical redox equilibria of ZoBell's solution. Geochimica Et Cosmochimica Acta, 1977, 41, 1835-1841.	1.6	296
5	The Geochemical Behavior of Aluminum in Acidified Surface Waters. Science, 1986, 232, 54-56.	6.0	230
6	Fluorite solubility equilibria in selected geothermal waters. Geochimica Et Cosmochimica Acta, 1977, 41, 175-188.	1.6	189
7	Acid rock drainage and climate change. Journal of Geochemical Exploration, 2009, 100, 97-104.	1.5	156
8	Revised Chemical Equilibrium Data for Major Water—Mineral Reactions and Their Limitations. ACS Symposium Series, 1990, , 398-413.	0.5	153
9	Preservation of water samples for arsenic(III/V) determinations: an evaluation of the literature and new analytical results. Applied Geochemistry, 2004, 19, 995-1009.	1.4	150
10	New Method for the Direct Determination of Dissolved Fe(III) Concentration in Acid Mine Waters. Environmental Science & Technology, 1999, 33, 807-813.	4.6	143
11	Advances in the Hydrogeochemistry and Microbiology of Acid Mine Waters. International Geology Review, 2000, 42, 499-515.	1.1	137
12	Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid–sulfate waters. Applied Geochemistry, 2009, 24, 191-207.	1.4	136
13	Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. the origin of thiosulfate in hot spring waters. Geochimica Et Cosmochimica Acta, 1998, 62, 3729-3743.	1.6	116
14	Aqueous Pyrite Oxidation and the Consequent Formation of Secondary Iron Minerals. SSSA Special Publication Series, 0, , 37-56.	0.2	115
15	Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Applied Geochemistry, 2009, 24, 2061-2071.	1.4	103
16	Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochimica Et Cosmochimica Acta, 2006, 70, 2480-2491.	1.6	91
17	A new method of calculating electrical conductivity with applications to natural waters. Geochimica Et Cosmochimica Acta, 2012, 77, 369-382.	1.6	80
18	Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. Science of the Total Environment, 2019, 678, 309-325.	3.9	73

#	Article	IF	CITATIONS
19	Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition of thiosulfate and polythionate in Cinder Pool. Journal of Volcanology and Geothermal Research, 2000, 97, 407-423.	0.8	69
20	Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation. Geochimica Et Cosmochimica Acta, 2011, 75, 4476-4489.	1.6	69
21	Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California. Chemical Geology, 2005, 215, 387-405.	1.4	67
22	Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser. BMC Microbiology, 2010, 10, 205.	1.3	63
23	The role of "blebbing―in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans. Chemical Geology, 2000, 169, 425-433.	1.4	53
24	Baseline and premining geochemical characterization of mined sites. Applied Geochemistry, 2015, 57, 17-34.	1.4	53
25	Ammonium in thermal waters of Yellowstone National Park: Processes affecting speciation and isotope fractionation. Geochimica Et Cosmochimica Acta, 2011, 75, 4611-4636.	1.6	52
26	Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska. Chemical Geology, 2008, 255, 160-172.	1.4	51
27	Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico. Water Research, 2020, 185, 116257.	5.3	49
28	Ground water chemistry and geochemical modeling of water-rock interactions at the Osamu Utsumi mine and the Morro do Ferro analogue study sites, Poços de Caldas, Minas Gerais, Brazil. Journal of Geochemical Exploration, 1992, 45, 249-287.	1.5	48
29	Models, validation, and applied geochemistry: Issues in science, communication, and philosophy. Applied Geochemistry, 2012, 27, 1899-1919.	1.4	46
30	A geochemical examination of humidity cell tests. Applied Geochemistry, 2017, 81, 109-131.	1.4	37
31	Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry. Journal of Volcanology and Geothermal Research, 2010, 196, 139-155.	0.8	35
32	Guidance for the Integrated Use of Hydrological, Geochemical, and Isotopic Tools in Mining Operations. Mine Water and the Environment, 2020, 39, 204-228.	0.9	35
33	Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems. Journal of Volcanology and Geothermal Research, 2014, 288, 94-104.	0.8	32
34	Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA. Applied Geochemistry, 2006, 21, 1868-1879.	1.4	31
35	Naturally acidic surface and ground waters draining porphyry-related mineralized areas of the Southern Rocky Mountains, Colorado and New Mexico. Applied Geochemistry, 2009, 24, 255-267.	1.4	31
36	Simultaneous oxidation of arsenic and antimony at low and circumneutral pH, with and without microbial catalysis. Applied Geochemistry, 2012, 27, 281-291.	1.4	31

#	Article	IF	CITATIONS
37	Trace metal speciation in natural waters: Computational vs. analytical. Water, Air, and Soil Pollution, 1996, 90, 257-267.	1.1	24
38	7. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters. , 2001, , 351-404.		24
39	Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters. Geochemical Transactions, 2003, 4, 1.	1.8	24
40	Modeling Low-Temperature Geochemical Processes. , 2014, , 27-68.		24
41	Fate of Antimony and Arsenic in Contaminated Waters at the Abandoned Su Suergiu Mine (Sardinia,) Tj ETQq1 1	0.784314	4 rgBT /Overla
42	Electrical conductivity method for natural waters. Applied Geochemistry, 2011, 26, S227-S229.	1.4	20
43	<i>Sulfolobus islandicus</i> metaâ€populations in Yellowstone National Park hot springs. Environmental Microbiology, 2017, 19, 2334-2347.	1.8	19
44	Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA. Journal of Volcanology and Geothermal Research, 2016, 328, 105-114.	0.8	17
45	On the thermodynamics and kinetics of scorodite dissolution. Geochimica Et Cosmochimica Acta, 2019, 265, 468-477.	1.6	16
46	Geochemical Modeling of Iron and Aluminum Precipitation during Mixing and Neutralization of Acid Mine Drainage. Minerals (Basel, Switzerland), 2020, 10, 547.	0.8	16
47	Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park. Applied Geochemistry, 2012, 27, 2370-2381.	1.4	15
48	Seasonal fluctuations and geochemical modeling of acid mine drainage in the semi-arid Puna region: The Pan de Azúcar Pb–Ag–Zn mine, Argentina. Journal of South American Earth Sciences, 2021, 109, 103197.	0.6	14
49	Ionic molal conductivities, activity coefficients, and dissociation constants of HAsO42â^' and H2AsO4â [~] ' from 5 to 90 ŰC and ionic strengths from 0.001 up to 3 mol kgâ^'1 and applications in natural systems. Chemical Geology, 2016, 441, 177-190.	1.4	13
50	Effects and quantification of acid runoff from sulfide-bearing rock deposited during construction of Highway E18, Norway. Applied Geochemistry, 2015, 62, 150-163.	1.4	11
51	Modeling Low-Temperature Geochemical Processes. , 2007, , 1-38.		8
52	4. Thermodynamic Properties for Arsenic Minerals and Aqueous Species. , 2014, , 217-256.		7
53	The solid-state partitioning, distribution, and mineralogical associations of arsenic and antimony: Integrated findings from the Altiplano Puna, South America and international comparisons. Journal of South American Earth Sciences, 2022, 114, 103713.	0.6	7
54	What was the groundwater quality before mining in a mineralized region? Lessons from the Questa project. Geosciences Journal, 2008, 12, 139-149.	0.6	6

#	Article	IF	CITATIONS
55	Thermodynamic Properties of Aqueous Arsenic Species and Scorodite Solubility. Procedia Earth and Planetary Science, 2017, 17, 594-597.	0.6	5
56	Evaluation for internal consistency in the thermodynamic network involving fluorite, cryolite, and villiaumite solubilities and aqueous species at 25 ŰC and 1 bar. Mineralogical Magazine, 0, , 1-29.	0.6	2
57	Geochemical modelling for mine site characterization and remediation. E3S Web of Conferences, 2019, 98, 05013.	0.2	1
58	Thermal water chemistry of Yellowstone National Park after 24 years of research. E3S Web of Conferences, 2019, 98, 07020.	0.2	1
59	Ground water chemistry and geochemical modeling of water–rock interactions at the Osamu Utsumi mine and the Morro do Ferro analogue study sites, Poços de Caldas, Minas Gerais, Brazil. , 1993, , 249-287.		1
60	Trace Metal Speciation in Natural Waters: Computational vs. Analytical. , 1996, , 257-267.		0