
Sandra L Mclellan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8752328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	8.0	153
2	SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. Environmental Science: Water Research and Technology, 2022, 8, 757-770.	2.4	46
3	Effect of Time and Temperature on SARS-CoV-2 in Municipal Wastewater Conveyance Systems. Water (Switzerland), 2022, 14, 1373.	2.7	7
4	Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach. Environmental Pollution, 2022, 307, 119456.	7.5	5
5	Selective Survival of Escherichia coli Phylotypes in Freshwater Beach Sand. Applied and Environmental Microbiology, 2021, 87, .	3.1	9
6	Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance. Environmental Science: Water Research and Technology, 2021, 7, 1545-1551.	2.4	34
7	A weight-of-evidence approach for identifying potential sources of untreated sewage inputs into a complex urbanized catchment. Environmental Pollution, 2021, 275, 116575.	7.5	6
8	Evaluation of Sampling, Analysis, and Normalization Methods for SARS-CoV-2 Concentrations in Wastewater to Assess COVID-19 Burdens in Wisconsin Communities. ACS ES&T Water, 2021, 1, 1955-1965.	4.6	169
9	SARS-CoV-2 Wastewater Surveillance for Public Health Action. Emerging Infectious Diseases, 2021, 27, 1-8.	4.3	73
10	Optical Properties of Water for Prediction of Wastewater Contamination, Human-Associated Bacteria, and Fecal Indicator Bacteria in Surface Water at Three Watershed Scales. Environmental Science & Technology, 2021, 55, 13770-13782.	10.0	6
11	FORENSIC: an Online Platform for Fecal Source Identification. MSystems, 2020, 5, .	3.8	12
12	Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19. Environmental Science & amp; Technology, 2020, 54, 7754-7757.	10.0	337
13	Ecological and Technical Mechanisms for Cross-Reaction of Human Fecal Indicators with Animal Hosts. Applied and Environmental Microbiology, 2020, 86, .	3.1	14
14	The unexpected habitat in sewer pipes for the propagation of microbial communities and their imprint on urban waters. Current Opinion in Biotechnology, 2019, 57, 34-41.	6.6	71
15	Host Specificity and Sensitivity of Established and Novel Sewage-Associated Marker Genes in Human and Nonhuman Fecal Samples. Applied and Environmental Microbiology, 2019, 85, .	3.1	53
16	Highly Specific Sewage-Derived <i>Bacteroides</i> Quantitative PCR Assays Target Sewage-Polluted Waters. Applied and Environmental Microbiology, 2019, 85, .	3.1	21
17	Patterns of Host-Associated Fecal Indicators Driven by Hydrology, Precipitation, and Land Use Attributes in Great Lakes Watersheds. Environmental Science & Technology, 2018, 52, 11500-11509.	10.0	20
18	Fecal source identification using random forest. Microbiome, 2018, 6, 185.	11.1	88

2

#	Article	IF	CITATIONS
19	Human-Associated Indicator Bacteria and Human-Specific Viruses in Surface Water: A Spatial Assessment with Implications on Fate and Transport. Environmental Science & Technology, 2018, 52, 12162-12171.	10.0	13
20	High levels of sewage contamination released from urban areas after storm events: A quantitative survey with sewage specific bacterial indicators. PLoS Medicine, 2018, 15, e1002614.	8.4	95
21	Human-Associated Lachnospiraceae Genetic Markers Improve Detection of Fecal Pollution Sources in Urban Waters. Applied and Environmental Microbiology, 2018, 84, .	3.1	58
22	Sewage loading and microbial risk in urban waters of the Great Lakes. Elementa, 2018, 6, .	3.2	25
23	Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches. Applied and Environmental Microbiology, 2017, 83, .	3.1	23
24	Modeling the fecal coliform footprint in a Lake Michigan urban coastal area. Environmental Modelling and Software, 2017, 95, 401-419.	4.5	18
25	Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira. Frontiers in Microbiology, 2017, 8, 101.	3.5	178
26	Beach sand and the potential for infectious disease transmission: observations and recommendations. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 101-120.	0.8	80
27	Quantification of human-associated fecal indicators reveal sewage from urban watersheds as a source of pollution to Lake Michigan. Water Research, 2016, 100, 556-567.	11.3	69
28	Identification of Specialists and Abundance-Occupancy Relationships among Intestinal Bacteria of <i>Aves</i> , Mammalia, and Actinopterygii. Applied and Environmental Microbiology, 2016, 82, 1496-1503.	3.1	3
29	A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Frontiers in Microbiology, 2015, 6, 1028.	3.5	91
30	Invasive dreissenid mussels and benthic algae in Lake Michigan: characterizing effects on sediment bacterial communities. FEMS Microbiology Ecology, 2015, 91, 1-12.	2.7	29
31	Influence of Land Use, Nutrients, and Geography on Microbial Communities and Fecal Indicator Abundance at Lake Michigan Beaches. Applied and Environmental Microbiology, 2015, 81, 4904-4913.	3.1	40
32	Sewage Reflects the Microbiomes of Human Populations. MBio, 2015, 6, e02574.	4.1	220
33	Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups. Applied and Environmental Microbiology, 2015, 81, 7023-7033.	3.1	57
34	A single genus in the gut microbiome reflects host preference and specificity. ISME Journal, 2015, 9, 90-100.	9.8	159
35	Urban microbial ecology of a freshwater estuary of Lake Michigan. Elementa, 2015, 3, .	3.2	55
36	The microbiome of urban waters. International Microbiology, 2015, 18, 141-9.	2.4	51

SANDRA L MCLELLAN

#	Article	IF	CITATIONS
37	Comparison of Bacterial Communities in Sands and Water at Beaches with Bacterial Water Quality Violations. PLoS ONE, 2014, 9, e90815.	2.5	47
38	Population dynamics and ecology of Arcobacter in sewage. Frontiers in Microbiology, 2014, 5, 525.	3.5	91
39	The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill. Frontiers in Microbiology, 2014, 5, 205.	3.5	98
40	Sources and Distribution of Surface Water Fecal Contamination and Prevalence of Schistosomiasis in a Brazilian Village. PLoS Neglected Tropical Diseases, 2014, 8, e3186.	3.0	17
41	<i><scp>B</scp>lautia</i> and <i><scp>P</scp>revotella</i> sequences distinguish human and animal fecal pollution in <scp>B</scp> razil surface waters. Environmental Microbiology Reports, 2014, 6, 696-704.	2.4	38
42	Analysis of the Gull Fecal Microbial Community Reveals the Dominance of Catellicoccus marimammalium in Relation to Culturable Enterococci. Applied and Environmental Microbiology, 2014, 80, 757-765.	3.1	30
43	Effect of hydrological and geophysical factors on formation of standing water and FIB reservoirs at a Lake Michigan beach. Journal of Great Lakes Research, 2014, 40, 778-789.	1.9	2
44	Discovering new indicators of fecal pollution. Trends in Microbiology, 2014, 22, 697-706.	7.7	136
45	Marine and Freshwater Fecal Indicators and Source Identification. , 2014, , 1-33.		0
46	A Microbial Signature Approach to Identify Fecal Pollution in the Waters Off an Urbanized Coast of Lake Michigan. Microbial Ecology, 2013, 65, 1011-1023.	2.8	193
47	Sewage reflects the distribution of human faecal <i><scp>L</scp>achnospiraceae</i> . Environmental Microbiology, 2013, 15, 2213-2227.	3.8	88
48	Comparison of the Microbial Community Structures of Untreated Wastewaters from Different Geographic Locales. Applied and Environmental Microbiology, 2013, 79, 2906-2913.	3.1	142
49	Shifts in the Microbial Community Composition of Gulf Coast Beaches Following Beach Oiling. PLoS ONE, 2013, 8, e74265.	2.5	72
50	Marine and Freshwater Fecal Indicators and Source Identification. , 2013, , 199-235.		3
51	<i>Acinetobacter</i> , <i>Aeromonas</i> and <i>Trichococcus</i> populations dominate the microbial community within urban sewer infrastructure. Environmental Microbiology, 2012, 14, 2538-2552.	3.8	153
52	Community Structures of Fecal Bacteria in Cattle from Different Animal Feeding Operations. Applied and Environmental Microbiology, 2011, 77, 2992-3001.	3.1	342
53	Detection of the human specific Bacteroides genetic marker provides evidence of widespread sewage contamination of stormwater in the urban environment. Water Research, 2011, 45, 4081-4091.	11.3	197
54	Water use and acute diarrhoeal illness in children in a United States metropolitan area. Epidemiology and Infection, 2011, 139, 295-301.	2.1	7

SANDRA L MCLELLAN

#	Article	IF	CITATIONS
55	Lachnospiraceae and Bacteroidales Alternative Fecal Indicators Reveal Chronic Human Sewage Contamination in an Urban Harbor. Applied and Environmental Microbiology, 2011, 77, 6972-6981.	3.1	104
56	Diversity and population structure of sewageâ€derived microorganisms in wastewater treatment plant influent. Environmental Microbiology, 2010, 12, 378-392.	3.8	342
57	Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environmental Microbiology, 2010, 12, 1376-1376.	3.8	9
58	Freshwater Suspended Sediments and Sewage Are Reservoirs for Enterotoxin-Positive <i>Clostridium perfringens</i> . Applied and Environmental Microbiology, 2010, 76, 5556-5562.	3.1	59
59	Association between Rainfall and Pediatric Emergency Department Visits for Acute Gastrointestinal Illness. Environmental Health Perspectives, 2010, 118, 1439-1443.	6.0	102
60	Environmental and Social Impact of Stormwater Outfalls at Lake Michigan Beaches. International Journal of Social Ecology and Sustainable Development, 2010, 1, 34-48.	0.2	1
61	Success of science-based best management practices in reducing swimming bans—a case study from Racine, Wisconsin, USA. Aquatic Ecosystem Health and Management, 2009, 12, 187-196.	0.6	31
62	Bacteroidales Diversity in Ring-Billed Gulls (Laurus delawarensis) Residing at Lake Michigan Beaches. Applied and Environmental Microbiology, 2009, 75, 1525-1533.	3.1	31
63	Reliability of mCP method for identification ofClostridium perfringensfrom faecal polluted aquatic environments. Journal of Applied Microbiology, 2009, 108, 1994-2002.	3.1	11
64	Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiology Ecology, 2009, 67, 511-522.	2.7	86
65	Climate Change and Waterborne Disease Risk in the Great Lakes Region of the U.S American Journal of Preventive Medicine, 2008, 35, 451-458.	3.0	186
66	Development and Validation of a Self-Administered Questionnaire to Measure Water Exposures in Children. Academic Pediatrics, 2008, 8, 388-391.	1.7	6
67	Identification of human enteric pathogens in gull feces at Southwestern Lake Michigan bathing beaches. Canadian Journal of Microbiology, 2008, 54, 1006-1015.	1.7	55
68	Distribution and Fate of Escherichia coli in Lake Michigan Following Contamination with Urban Stormwater and Combined Sewer Overflows. Journal of Great Lakes Research, 2007, 33, 566.	1.9	104
69	The potential for beach sand to serve as a reservoir for Escherichia coli and the physical influences on cell die-off. Journal of Applied Microbiology, 2007, 102, 1372-1381.	3.1	117
70	Influence of Nearshore Water Dynamics and Pollution Sources on Beach Monitoring Outcomes at Two Adjacent Lake Michigan Beaches. Journal of Great Lakes Research, 2006, 32, 543-552.	1.9	22
71	Accumulation and fate of green fluorescent labeled Escherichia coli in laboratory-scale drinking water biofilters. Water Research, 2006, 40, 3023-3028.	11.3	31
72	Delineation of a chemical and biological signature for stormwater pollution in an urban river. Journal of Water and Health, 2006, 4, 247-262.	2.6	28

SANDRA L MCLELLAN

#	Article	IF	CITATIONS
73	Evaluation of Bacteria Impacts on Beaches in Milwaukee: The Bacteria Source, Transport, and Fate Study. , 2006, , .		Ο
74	Microbial Communities and Fecal Indicator Bacteria Associated with Cladophora Mats on Beach Sites along Lake Michigan Shores. Applied and Environmental Microbiology, 2006, 72, 1932-1938.	3.1	89
75	Delineation of a chemical and biological signature for stormwater pollution in an urban river. Journal of Water and Health, 2006, 4, 247-62.	2.6	11
76	Detection of Genetic Markers of Fecal Indicator Bacteria in Lake Michigan and Determination of Their Relationship to Escherichia coli Densities Using Standard Microbiological Methods. Applied and Environmental Microbiology, 2005, 71, 8305-8313.	3.1	110
77	Non-point source pollution: Determination of replication versus persistence of Escherichia coli in surface water and sediments with correlation of levels to readily measurable environmental parameters. Journal of Water and Health, 2004, 2, 103-114.	2.6	44
78	Genetic Diversity of Escherichia coli Isolated from Urban Rivers and Beach Water. Applied and Environmental Microbiology, 2004, 70, 4658-4665.	3.1	110
79	Non-point source pollution: determination of replication versus persistence of Escherichia coli in surface water and sediments with correlation of levels to readily measurable environmental parameters. Journal of Water and Health, 2004, 2, 103-14.	2.6	12
80	Evidence for localized bacterial loading as the cause of chronic beach closings in a freshwater marina. Water Research, 2003, 37, 2700-2708.	11.3	66
81	Genetic Characterization of Escherichia coli Populations from Host Sources of Fecal Pollution by Using DNA Fingerprinting. Applied and Environmental Microbiology, 2003, 69, 2587-2594.	3.1	108
82	The effect of polycyclic aromatic hydrocarbons on the degradation of benzo[<i>a</i>]pyrene by <i>Mycobacterium</i> sp. strain RJGIIâ€135. Environmental Toxicology and Chemistry, 2002, 21, 253-259.	4.3	41
83	The effect of polycyclic aromatic hydrocarbons on the degradation of benzo[a]pyrene by Mycobacterium sp. strain RJGII-135. Environmental Toxicology and Chemistry, 2002, 21, 253-9.	4.3	10
84	Clonal Populations of Thermotolerant Enterobacteriaceae in Recreational Water and Their Potential Interference with Fecal Escherichia coli Counts. Applied and Environmental Microbiology, 2001, 67, 4934-4938.	3.1	57
85	Environmental and Social Impact of Stormwater Outfalls at Lake Michigan Beaches. , 0, , 150-165.		0
86	Guts of the Urban Ecosystem: Microbial Ecology of Sewer Infrastructure. MSystems, 0, , .	3.8	5