Mario Agio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8752060/publications.pdf

Version: 2024-02-01

79 papers	2,292 citations	25 h-index	223800 46 g-index
83	83	83	2918
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biosensing with a scanning planar Yagi-Uda antenna. Biomedical Optics Express, 2022, 13, 539.	2.9	1
2	Optical properties of silicon-implanted polycrystalline diamond membranes. Carbon, 2021, 174, 295-304.	10.3	8
3	Ultrafast single-photon detection at high repetition rates based on optical Kerr gates under focusing. Optics Letters, 2021, 46, 560.	3.3	6
4	A scanning planar Yagi-Uda antenna for fluorescence detection. , 2021, , .		1
5	Ultrafast Single-Photon Detection based on Optical Kerr Gates. , 2021, , .		O
6	Scanning planar Yagi-Uda antenna for fluorescence detection. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2528.	2.1	3
7	Light-matter interaction in complex photonics systems: introduction. Journal of the Optical Society of America B: Optical Physics, 2021, 38, LMI1.	2.1	0
8	Ultrafast single-photon detection at high repetition rates based on optical Kerr gates under focusing: erratum. Optics Letters, 2021, 46, 5205.	3.3	1
9	Scalable Creation of Deep Siliconâ€Vacancy Color Centers in Diamond by Ion Implantation through a 1â€Î¼m Pinhole. Advanced Quantum Technologies, 2021, 4, 2100079.	3.9	5
10	Silicon-vacancy color centers in phosphorus-doped diamond. Diamond and Related Materials, 2020, 105, 107797.	3.9	10
11	SEPSIS biomarker detection through fiber-based planar antennas (Conference Presentation). , 2020, , .		1
12	Focused Gaussian beam in the paraxial approximation. Optics Letters, 2020, 45, 6752.	3.3	1
13	Highly-Efficient Extraction of Single Photons from Single SiV Centers in Diamond Using Plasmonic Nanoantenna. , 2020, , .		1
14	Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot. Journal of Physical Chemistry Letters, 2019, 10, 2874-2878.	4.6	18
15	Planar antenna designs for efficient coupling between a single emitter and an optical fiber. Optics Express, 2019, 27, 30830.	3.4	9
16	Exploring ultrafast single-photon emission of silicon-vacancy color centers in diamond nano-membranes coupled with gold nano-cones. , 2019, , .		1
17	The center for production of single-photon emitters at the electrostatic-deflector line of the Tandem accelerator of LABEC (Florence). Nuclear Instruments & Methods in Physics Research B, 2018, 422, 31-40.	1.4	11
18	Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing. Diamond and Related Materials, 2018, 84, 196-203.	3.9	32

#	Article	IF	CITATIONS
19	Plasmonic Nanoantenna for Single-Photon Sources on Diamond: Pursuing 100% Collection Efficiency. , $2018, , .$		0
20	Quadrature-Squeezed from Emitters in Optical. Springer Series in Solid-state Sciences, 2017, , 25-46.	0.3	2
21	Beaming light from a quantum emitter with a planar optical antenna. Light: Science and Applications, 2017, 6, e16245-e16245.	16.6	41
22	Dynamics of Single-Photon Emission from Electrically Pumped Color Centers. Physical Review Applied, 2017, 8, .	3.8	25
23	Plasmonic Gold Nanocones in the Nearâ€Infrared for Quantum Nanoâ€Optics. Advanced Optical Materials, 2017, 5, 1700586.	7.3	12
24	Kinetics of single-photon emission from electrically pumped NV centers in diamond. AIP Conference Proceedings, 2017, , .	0.4	9
25	Ultrabright electrically driven single-photon source on diamond operating above room temperature. , 2017, , .		2
26	Planar Yagi-Uda antennas for highly efficient light extraction and directional light emission., 2017,,.		0
27	Highly efficient light extraction and directional emission from large refractive-index materials with a planar Yagi-Uda antenna. Optical Materials Express, 2017, 7, 1634.	3.0	27
28	Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures. New Journal of Physics, 2016, 18, 073012.	2.9	51
29	The squeezing spectrum of a quantum emitter coupled to an optical nanostructure. Journal of Optics (United Kingdom), 2016, 18, 024010.	2.2	4
30	Planar optical antenna to direct light emission. , 2016, , .		0
31	Robust luminescence of the silicon-vacancy center in diamond at high temperatures. AIP Advances, 2015, 5, .	1.3	31
32	Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: ultrasensitive, real-time and reproducible detection of TNT. Analyst, The, 2015, 140, 5671-5677.	3.5	24
33	Enhancement of the intrinsic fluorescence of adenine using aluminum nanoparticle arrays. Optics Express, 2015, 23, 24719.	3.4	28
34	Large Suppression of Quantum Fluctuations of Light from a Single Emitter by an Optical Nanostructure. Physical Review Letters, 2014, 113, 263605.	7.8	25
35	Nanophotonics and quantum optics. , 2014, , .		0
36	Antennas, quantum optics and near-field microscopy. , 2013, , 100-121.		4

#	Article	IF	Citations
37	The Purcell factor of nanoresonators. Nature Photonics, 2013, 7, 674-675.	31.4	41
38	Coherent Interaction of Light with a Metallic Structure Coupled to a Single Quantum Emitter: From Superabsorption to Cloaking. Physical Review Letters, 2013, 110, 153605.	7.8	72
39	Ultrafast coherent nanoscopy. Molecular Physics, 2013, 111, 3003-3012.	1.7	8
40	Optical Antennas. , 2013, , .		141
41	Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Optics Express, 2012, 20, 19956.	3.4	143
42	Metallodielectric optical antennas for ultrabright single-photon sources. , 2012, , .		0
43	Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays. Journal of the American Chemical Society, 2012, 134, 1966-1969.	13.7	207
44	Coherent spectroscopy in strongly confined optical fields. Physica B: Condensed Matter, 2012, 407, 4086-4092.	2.7	2
45	Optical antennas as nanoscale resonators. Nanoscale, 2012, 4, 692-706.	5.6	112
46	Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission. Physical Review Letters, 2012, 108, 233001.	7.8	102
47	Light scattering under nanofocusing: Towards coherent nanoscopies. Optics Communications, 2012, 285, 3383-3389.	2.1	9
48	Metallodielectric optical antennas for enhancing and directing spontaneous emission. , 2012, , .		0
49	Metallodielectric Hybrid Optical Antennas for Ultrabright and Directional Single Photon Emission. , 2012, , .		O
50	Ultrafast coupling of an emitter to a plasmonic antenna. , 2011, , .		0
51	TaCoNa-Photonics 2009. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 209.	2.0	0
52	Fluorescence Enhancement with the Optical (Bi-) Conical Antenna. Journal of Physical Chemistry C, 2010, 114, 7372-7377.	3.1	59
53	Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field. Optics Express, 2010, 18, 10878.	3.4	38
54	Efficient coupling of single photons to single plasmons. Optics Express, 2010, 18, 13829.	3.4	16

#	Article	IF	CITATIONS
55	Magnetic metamaterials in the blue range using aluminum nanostructures. Optics Letters, 2010, 35, 1656.	3.3	23
56	Near Unity Conversion between Guided Photons and Surface Plasmon-Polaritons., 2009,,.		0
57	Perfect Reflection of Light by a Dipolar Emitter. , 2009, , .		0
58	Silver high-aspect-ratio micro- and nanoimprinting for optical applications. Applied Physics Letters, 2009, 94, .	3.3	25
59	Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams. Optics Express, 2009, 17, 117.	3.4	46
60	Coupling light to a localized surface plasmon-polariton. Proceedings of SPIE, 2009, , .	0.8	0
61	Highly Efficient Interfacing of Guided Plasmons and Photons in Nanowires. Nano Letters, 2009, 9, 3756-3761.	9.1	102
62	Plasmon spectra of nanospheres under a tightly focused beam. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 651.	2.1	56
63	Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method. Optics Express, 2008, 16, 7397.	3.4	42
64	Engineering gold nano-antennae to enhance the emission of quantum emitters. , 2007, , .		7
65	Scanning near-field optical coherent spectroscopy of single molecules at 14K. Optics Letters, 2007, 32, 1420.	3.3	21
66	Design of plasmonic nanoantennae for enhancing spontaneous emission. Optics Letters, 2007, 32, 1623.	3.3	249
67	Optical properties and diffraction effects in opal photonic crystals. Physical Review E, 2006, 74, 036603.	2.1	49
68	Dispersive contour-path finite-difference time-domain algorithm for modeling surface plasmon polaritons at flat interfaces. Optics Express, 2006, 14, 11330.	3.4	22
69	Optical Detection of Very Small Nonfluorescent Nanoparticles. Chimia, 2006, 60, 761-764.	0.6	7
70	Optical spectroscopy of silicon-on-insulator waveguide photonic crystals. , 2005, , .		0
71	Exciton-polaritons and nanoscale cavities in photonic crystal slabs. Physica Status Solidi (B): Basic Research, 2005, 242, 2197-2209.	1.5	18
72	Contour-path effective permittivities for the two-dimensional finite-difference time-domain method. Optics Express, 2005, 13, 10367.	3.4	95

#	ARTICLE	IF	CITATIONS
73	Quantum theory of photonic crystal polaritons. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 446-449.	0.8	7
74	Gap maps, diffraction losses, and exciton–polaritons in photonic crystal slabs. Photonics and Nanostructures - Fundamentals and Applications, 2004, 2, 103-110.	2.0	31
75	Intrinsic diffraction losses in photonic crystal waveguides with line defects. Applied Physics Letters, 2003, 82, 2011-2013.	3.3	61
76	Ministop bands in single-defect photonic crystal waveguides. Physical Review E, 2001, 64, 055603.	2.1	21
77	Complete photonic band gap in a two-dimensional chessboard lattice. Physical Review B, 2000, 61, 15519-15522.	3.2	34
78	Impurity modes in a two-dimensional photonic crystal: coupling efficiency and Q factor. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 2037.	2.1	12
79	Metal nanoparticles in strongly confined beams: transmission, reflection and absorption. Journal of the European Optical Society-Rapid Publications, 0, 4, .	1.9	16