
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8751940/publications.pdf Version: 2024-02-01



XIIDAN LIII

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids<br>from waste activated sludge. Water Research, 2019, 148, 239-249.                                                          | 5.3 | 188       |
| 2  | The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Research, 2019, 164, 114934.                                             | 5.3 | 184       |
| 3  | Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids<br>accumulation during long-term anaerobic fermentation of waste activated sludge. Water Research,<br>2019, 155, 142-151.         | 5.3 | 159       |
| 4  | Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Research, 2018, 130, 281-290.                                                                                 | 5.3 | 156       |
| 5  | Sulfite serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Chemical Engineering Journal, 2020, 385, 123991.                             | 6.6 | 131       |
| 6  | How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?. Water Research, 2019, 163, 114912.                                                                         | 5.3 | 124       |
| 7  | Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. Water Research, 2021, 188, 116539.                                                                     | 5.3 | 99        |
| 8  | Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. Water Research, 2021, 189, 116645.                                                                          | 5.3 | 95        |
| 9  | Effect of poly aluminum chloride on dark fermentative hydrogen accumulation from waste activated sludge. Water Research, 2019, 153, 217-228.                                                                              | 5.3 | 93        |
| 10 | Enhanced short-chain fatty acids production from waste activated sludge by sophorolipid:<br>Performance, mechanism, and implication. Bioresource Technology, 2019, 284, 456-465.                                          | 4.8 | 91        |
| 11 | Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge. Bioresource Technology, 2019, 275, 163-171.                                                          | 4.8 | 88        |
| 12 | Towards hydrogen production from waste activated sludge: Principles, challenges and perspectives.<br>Renewable and Sustainable Energy Reviews, 2021, 135, 110283.                                                         | 8.2 | 86        |
| 13 | Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresource Technology, 2018, 262, 114-123.                                         | 4.8 | 85        |
| 14 | Free Ammonia-Based Pretreatment Promotes Short-Chain Fatty Acid Production from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2018, 6, 9120-9129.                                                    | 3.2 | 79        |
| 15 | Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at<br>free nitrous acid pretreatment: Role and significance of Tea saponin. Bioresource Technology, 2018,<br>254, 194-202. | 4.8 | 79        |
| 16 | Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresource Technology, 2018, 268, 230-236.                           | 4.8 | 77        |
| 17 | How Does Chitosan Affect Methane Production in Anaerobic Digestion?. Environmental Science &<br>Technology, 2021, 55, 15843-15852.                                                                                        | 4.6 | 76        |
| 18 | Interaction between perfluorooctanoic acid and aerobic granular sludge. Water Research, 2020, 169,<br>115249.                                                                                                             | 5.3 | 75        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Enhanced Short-Chain Fatty Acids from Waste Activated Sludge by Heat–CaO <sub>2</sub> Advanced<br>Thermal Hydrolysis Pretreatment: Parameter Optimization, Mechanisms, and Implications. ACS<br>Sustainable Chemistry and Engineering, 2019, 7, 3544-3555. | 3.2 | 71        |
| 20 | Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge. Chemosphere, 2018, 213, 276-284.                                                                                                                     | 4.2 | 70        |
| 21 | Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free<br>ammonia pretreatment: Role and significance of rhamnolipid. Bioresource Technology, 2018, 267,<br>141-148.                                           | 4.8 | 70        |
| 22 | Activation of nitrite by freezing process for anaerobic digestion enhancement of waste activated sludge: Performance and mechanisms. Chemical Engineering Journal, 2020, 387, 124147.                                                                      | 6.6 | 70        |
| 23 | Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 281, 158-167.                                    | 4.8 | 68        |
| 24 | Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. Bioresource Technology, 2019, 283, 316-325.                                                                                                             | 4.8 | 65        |
| 25 | Mechanisms of potassium permanganate pretreatment improving anaerobic fermentation performance of waste activated sludge. Chemical Engineering Journal, 2021, 406, 126797.                                                                                 | 6.6 | 64        |
| 26 | Digestion liquid based alkaline pretreatment of waste activated sludge promotes methane production from anaerobic digestion. Water Research, 2021, 199, 117198.                                                                                            | 5.3 | 63        |
| 27 | Enhanced methane production from waste activated sludge by combining calcium peroxide with<br>ultrasonic: Performance, mechanism, and implication. Bioresource Technology, 2019, 279, 108-116.                                                             | 4.8 | 52        |
| 28 | Understanding the mechanism of how anaerobic fermentation deteriorates sludge dewaterability.<br>Chemical Engineering Journal, 2021, 404, 127026.                                                                                                          | 6.6 | 51        |
| 29 | How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. Chemosphere, 2018, 206, 491-501.                                                                                            | 4.2 | 50        |
| 30 | Peroxide/Zero-valent iron (Fe0) pretreatment for promoting dewaterability of anaerobically digested sludge: A mechanistic study. Journal of Hazardous Materials, 2020, 400, 123112.                                                                        | 6.5 | 49        |
| 31 | Effect of lignin on short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Water Research, 2022, 212, 118082.                                                                                                           | 5.3 | 48        |
| 32 | Freezing in the presence of nitrite pretreatment enhances hydrogen production from dark fermentation of waste activated sludge. Journal of Cleaner Production, 2020, 248, 119305.                                                                          | 4.6 | 45        |
| 33 | Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition:<br>Feasibility, mechanisms and implications. Bioresource Technology, 2020, 318, 124266.                                                                   | 4.8 | 44        |
| 34 | Enhanced dark fermentative hydrogen production from waste activated sludge by combining potassium ferrate with alkaline pretreatment. Science of the Total Environment, 2020, 707, 136105.                                                                 | 3.9 | 39        |
| 35 | Clarithromycin affect methane production from anaerobic digestion of waste activated sludge.<br>Journal of Cleaner Production, 2020, 255, 120321.                                                                                                          | 4.6 | 39        |
| 36 | Revealing the Underlying Mechanisms of How Initial pH Affects Waste Activated Sludge Solubilization<br>and Dewaterability in Freezing and Thawing Process. ACS Sustainable Chemistry and Engineering, 2018,<br>6, 15822-15831.                             | 3.2 | 35        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Revealing how the entering nano-titanium dioxide in wastewater worsened sludge dewaterability.<br>Chemical Engineering Journal, 2021, 411, 128465.                                                                         | 6.6 | 32        |
| 38 | Microwave pretreatment of polyacrylamide flocculated waste activated sludge: Effect on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 290, 121776.                                      | 4.8 | 31        |
| 39 | Effect of sodium dodecylbenzene sulfonate on hydrogen production from dark fermentation of waste activated sludge. Science of the Total Environment, 2021, 799, 149383.                                                    | 3.9 | 30        |
| 40 | The novel pretreatment of Co2+ activating peroxymonosulfate under acidic condition for dewatering waste activated sludge. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 259-267.                       | 2.7 | 29        |
| 41 | Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. Water Research, 2022, 221, 118780.                                          | 5.3 | 29        |
| 42 | Rhamnolipid increases H2S generation from waste activated sludge anaerobic fermentation: An overlooked concern. Water Research, 2022, 221, 118742.                                                                         | 5.3 | 29        |
| 43 | Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic and free nitrous acid pretreatment: Performance, mechanism, and implication. Bioresource Technology, 2019, 285, 121363.                 | 4.8 | 28        |
| 44 | The fate and impact of TCC in nitrifying cultures. Water Research, 2020, 178, 115851.                                                                                                                                      | 5.3 | 28        |
| 45 | Performance and Mechanism of Potassium Ferrate(VI) Enhancing Dark Fermentative Hydrogen<br>Accumulation from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2020, 8,<br>8681-8691.                     | 3.2 | 25        |
| 46 | New insight into modification of extracellular polymeric substances extracted from waste activated sludge by homogeneous Fe(II)/persulfate process. Chemosphere, 2020, 247, 125804.                                        | 4.2 | 24        |
| 47 | Triclosan degradation in sludge anaerobic fermentation and its impact on hydrogen production.<br>Chemical Engineering Journal, 2021, 421, 129948.                                                                          | 6.6 | 24        |
| 48 | Understanding and regulating the impact of tetracycline to the anaerobic fermentation of waste activated sludge. Journal of Cleaner Production, 2021, 313, 127929.                                                         | 4.6 | 23        |
| 49 | In-depth research on percarbonate expediting zero-valent iron corrosion for conditioning anaerobically digested sludge. Journal of Hazardous Materials, 2021, 419, 126389.                                                 | 6.5 | 23        |
| 50 | Norfloxacin-induced effect on enhanced biological phosphorus removal from wastewater after<br>long-term exposure. Journal of Hazardous Materials, 2020, 392, 122336.                                                       | 6.5 | 21        |
| 51 | Alkaline pre-fermentation for anaerobic digestion of polyacrylamide flocculated sludge:<br>Simultaneously enhancing methane production and polyacrylamide degradation. Chemical Engineering<br>Journal, 2021, 425, 131407. | 6.6 | 21        |
| 52 | Free nitrous acid-based nitrifying sludge treatment in a two-sludge system obtains high<br>polyhydroxyalkanoates accumulation and satisfied biological nutrients removal. Bioresource<br>Technology, 2019, 284, 16-24.     | 4.8 | 20        |
| 53 | Insights into potassium permanganate reducing H2S generation from anaerobic fermentation of sludge. Chemical Engineering Journal, 2022, 430, 133150.                                                                       | 6.6 | 20        |
| 54 | Insights into how poly aluminum chloride and poly ferric sulfate affect methane production from anaerobic digestion of waste activated sludge. Science of the Total Environment, 2022, 811, 151413.                        | 3.9 | 20        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Iron electrodes activating persulfate enhances acetic acid production from waste activated sludge.<br>Chemical Engineering Journal, 2020, 390, 124580.                                                                                  | 6.6 | 18        |
| 56 | Understanding the interaction between triclocarban and denitrifiers. Journal of Hazardous<br>Materials, 2021, 401, 123343.                                                                                                              | 6.5 | 16        |
| 57 | Spatial distribution, sources and risk assessment of perfluoroalkyl substances in surface soils of a representative densely urbanized and industrialized city of China. Catena, 2021, 198, 105059.                                      | 2.2 | 16        |
| 58 | Free ammonia pretreatment assists potassium ferrate to enhance the production of short-chain fatty<br>acids from waste activated sludge: Performance, mechanisms and applications. Journal of Cleaner<br>Production, 2021, 328, 129620. | 4.6 | 16        |
| 59 | Peracetic acid promotes biohydrogen production from anaerobic dark fermentation of waste activated sludge. Science of the Total Environment, 2022, 844, 156991.                                                                         | 3.9 | 16        |
| 60 | The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. Bioresource Technology, 2020, 297, 122428.                               | 4.8 | 15        |
| 61 | Calcium peroxide eliminates grease inhibition and promotes short-chain fatty acids production during anaerobic fermentation of food waste. Bioresource Technology, 2020, 316, 123947.                                                   | 4.8 | 15        |
| 62 | Insights into cetyl trimethyl ammonium bromide improving dewaterability of anaerobically fermented sludge. Chemical Engineering Journal, 2022, 435, 134968.                                                                             | 6.6 | 12        |
| 63 | Ferric chloride aiding nitrite pretreatment for the enhancement of the quantity and quality of short-chain fatty acids production in waste activated sludge. Water Research, 2022, 219, 118569.                                         | 5.3 | 12        |
| 64 | Evaluating the effect of diclofenac on hydrogen production by anaerobic fermentation of waste activated sludge. Journal of Environmental Management, 2022, 308, 114641.                                                                 | 3.8 | 11        |
| 65 | Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. Science of the Total Environment, 2022, 806, 150347.                                                             | 3.9 | 9         |
| 66 | Sulfite-based pretreatment promotes volatile fatty acids production from microalgae: Performance, mechanism, and implication. Bioresource Technology, 2022, 354, 127179.                                                                | 4.8 | 8         |
| 67 | The fate and impact of coagulants/flocculants in sludge treatment systems. Environmental Science:<br>Water Research and Technology, 2021, 7, 1387-1401.                                                                                 | 1.2 | 6         |
| 68 | The degradation of allyl isothiocyanate and its impact on methane production from anaerobic<br>co-digestion of kitchen waste and waste activated sludge. Bioresource Technology, 2022, 347, 126366.                                     | 4.8 | 6         |
| 69 | China's highways threaten wild camels. Science, 2019, 364, 1242-1242.                                                                                                                                                                   | 6.0 | 3         |
| 70 | Land reclamation threatens sandpipers. Science, 2019, 365, 454-454.                                                                                                                                                                     | 6.0 | 0         |