Laura Kiessling

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/875148/laura-kiessling-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16,055 67 205 123 h-index g-index citations papers 8.8 6.69 17,466 377 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
205	Biosynthetic incorporation for visualizing bacterial glycans <i>Methods in Enzymology</i> , 2022 , 665, 135-151	1.7	
204	CH-Interactions in Glycan Recognition. ACS Chemical Biology, 2021, 16, 1884-1893	4.9	2
203	Biosynthetic Glycan Labeling. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16337-16342	16.4	5
202	Stereochemical Control Yields Mucin Mimetic Polymers. ACS Central Science, 2021, 7, 624-630	16.8	6
201	Human intelectin-1 (ITLN1) genetic variation and intestinal expression. <i>Scientific Reports</i> , 2021 , 11, 1288	3 9 .9	3
200	Distinguishing Galactoside Isomers with Mass Spectrometry and Gas-Phase Infrared Spectroscopy. Journal of the American Chemical Society, 2021 , 143, 10509-10513	16.4	4
199	Glycan-Modified Virus-like Particles Evoke T Helper Type 1-like Immune Responses. <i>ACS Nano</i> , 2021 , 15, 309-321	16.7	18
198	Synthetic Glycomacromolecules of Defined Valency, Absolute Configuration, and Topology Distinguish between Human Lectins. <i>Jacs Au</i> , 2021 , 1, 1621-1630		7
197	A proteome-wide atlas of lysine-reactive chemistry. <i>Nature Chemistry</i> , 2021 , 13, 1081-1092	17.6	20
196	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133	5.6	
195	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498	4.3	
194	Confronting Racism in Chemistry Journals. <i>Organometallics</i> , 2020 , 39, 2331-2333	3.8	
193	Update to Our Reader, Reviewer, and Author Communities April 2020. <i>Energy & Description</i> 2020, 34, 5107-5108	4.1	
192	Update to Our Reader, Reviewer, and Author Communities April 2020. Organometallics, 2020, 39, 1665-	16,66	
191	Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200	1.7	
190	Stereoelectronic Effects Impact Glycan Recognition. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2386-2395	16.4	24
189	Polysaccharide length affects mycobacterial cell shape and antibiotic susceptibility. <i>Science Advances</i> , 2020 , 6,	14.3	5

(2015-2019)

Bacterial Cell Wall Modification with a Glycolipid Substrate. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9262-9272	16.4	19
Angiomotin Regulates YAP Localization during Neural Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports, 2019 , 12, 869-877	8	15
Antigen structure affects cellular routing through DC-SIGN. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 14862-14867	11.5	28
Modular Polymer Antigens To Optimize Immunity. <i>Biomacromolecules</i> , 2019 , 20, 4370-4379	6.9	2
Chemoselective, Postpolymerization Modification of Bioactive, Degradable Polymers. <i>Biomacromolecules</i> , 2019 , 20, 1018-1027	6.9	15
How many human proteoforms are there?. <i>Nature Chemical Biology</i> , 2018 , 14, 206-214	11.7	324
Imaging mycobacterial growth and division with a fluorogenic probe. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5271-5276	11.5	47
Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126	16.7	3
Recognition of microbial glycans by soluble human lectins. <i>Current Opinion in Structural Biology</i> , 2017 , 44, 168-178	8.1	42
Conformational Control of UDP-Galactopyranose Mutase Inhibition. <i>Biochemistry</i> , 2017 , 56, 3983-3992	3.2	1
Comparing Galactan Biosynthesis in and. Journal of Biological Chemistry, 2017, 292, 2944-2955	5.4	9
Deleterious Consequences of UDP-Galactopyranose Mutase Inhibition for Nematodes. <i>ACS Chemical Biology</i> , 2017 , 12, 2354-2361	4.9	
ChemRXiv: A Chemistry Preprint Server. ACS Chemical Biology, 2016, 11, 2937	4.9	
Fidelity and Promiscuity of a Mycobacterial Glycosyltransferase. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9205-11	16.4	9
Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Glycan Recognition. <i>Journal of Biological Chemistry</i> , 2016 , 291, 5596-5610	5.4	25
Training the next generation of biomedical investigators in glycosciences. <i>Journal of Clinical Investigation</i> , 2016 , 126, 405-8	15.9	29
Carboxylate Surrogates Enhance the Antimycobacterial Activity of UDP-Galactopyranose Mutase Probes. <i>ACS Infectious Diseases</i> , 2016 , 2, 538-43	5.5	14
Virtual Screening for UDP-Galactopyranose Mutase Ligands Identifies a New Class of Antimycobacterial Agents. <i>ACS Chemical Biology</i> , 2015 , 10, 2209-18	4.9	28
	Angiomotin Regulates YAP Localization during Neural Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports, 2019, 12, 869-877 Antigen structure affects cellular routing through DC-SIGN. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14862-14867 Modular Polymer Antigens To Optimize Immunity. Biomacromolecules, 2019, 20, 4370-4379 Chemoselective, Postpolymerization Modification of Bioactive, Degradable Polymers. Biomacromolecules, 2019, 20, 1018-1027 How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214 Imaging mycobacterial growth and division with a fluorogenic probe. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5271-5276 Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126 Recognition of microbial glycans by soluble human lectins. Current Opinion in Structural Biology, 2017, 44, 168-178 Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry, 2017, 56, 3983-3992 Comparing Galactan Biosynthesis in and. Journal of Biological Chemistry, 2017, 292, 2944-2955 Deleterious Consequences of UDP-Galactopyranose Mutase Inhibition for Nematodes. ACS Chemical Biology, 2017, 12, 2354-2361 ChemRXiv: A Chemistry Preprint Server. ACS Chemical Biology, 2016, 11, 2937 Fidelity and Promisculty of a Mycobacterial Clycosyltransferase. Journal of the American Chemical Society, 2016, 138, 9205-11 Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Clycan Recognition. Journal of Biological Chemistry, 2016, 291, 5596-5610 Training the next generation of biomedical investigators in glycosciences. Journal of Clinical Investigation, 2016, 126, 405-8 Carboxylate Surrogates Enhance the Antimycobacterial Activity of UDP-Galactopyranose Mutase Probes. ACS Infectious Diseases, 2016, 2, 538-43 Virtual Screening for UDP-Galactopyranose Mutase Ligands Identifies a New Class of	Angiomotin Regulates YAP Localization during Neural Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports, 2019, 12, 869-877 Antigen structure affects cellular routing through DC-SIGN. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14862-14867 Modular Polymer Antigens To Optimize Immunity. Biomacromolecules, 2019, 20, 4370-4379 6.9 Chemoselective, Postpolymerization Modification of Bioactive, Degradable Polymers. Biomacromolecules, 2019, 20, 1018-1027 How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214 11.7 Imaging mycobacterial growth and division with a fluorogenic probe. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5271-5276 Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126 16.7 Recognition of microbial glycans by soluble human lectins. Current Opinion in Structural Biology, 2017, 44, 168-178 Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry, 2017, 56, 3983-3992 2.2 Comparing Galactan Biosynthesis in and. Journal of Biological Chemistry, 2017, 292, 2944-2955 5.4 Deleterious Consequences of UDP-Galactopyranose Mutase Inhibition for Nematodes. ACS Chemical Biology, 2017, 12, 2354-2361 ChemRxiv: A Chemistry Preprint Server. ACS Chemical Biology, 2016, 11, 2937 4.9 Fidelity and Promiscuity of a Mycobacterial Clycosyltransferase. Journal of the American Chemical Society, 2016, 138, 9205-11 Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Clycan Recognition. Journal of Biological Chemistry, 2016, 291, 5596-5610 7.4 Training the next generation of biomedical investigators in glycosciences. Journal of Clinical Investigation, 2016, 126, 405-8 Carboxylate Surrogates Enhance the Antimycobacterial Activity of UDP-Galactopyranose Mutase Probes. ACS Infectious Diseases, 2016, 2, 538-43 Virtual Screening for UDP-Galactopyranose Mutase Ligands Identifies a New Class of

170	Recognition of microbial glycans by human intelectin-1. <i>Nature Structural and Molecular Biology</i> , 2015 , 22, 603-10	17.6	96
169	Forces of Change: Mechanics Underlying Formation of Functional 3D Organ Buds. <i>Cell Stem Cell</i> , 2015 , 16, 453-4	18	9
168	Biologically Active Polymers 2015 , 169-205		1
167	The non-detergent sulfobetaine-201 acts as a pharmacological chaperone to promote folding and crystallization of the type II TGF-Ireceptor extracellular domain. <i>Protein Expression and Purification</i> , 2015 , 115, 19-25	2	3
166	Carbohydrate-Aromatic Interactions in Proteins. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15152-60	16.4	204
165	Multivalent Antigens for Promoting B and T Cell Activation. ACS Chemical Biology, 2015, 10, 1817-24	4.9	45
164	New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. <i>Biochemistry</i> , 2014 , 53, 1575-85	3.2	62
163	Synthetic antigens reveal dynamics of BCR endocytosis during inhibitory signaling. <i>ACS Chemical Biology</i> , 2014 , 9, 202-10	4.9	17
162	Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 16724-9	11.5	75
161	Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13805-10	11.5	114
160	A symposium in honor of Peter B. Dervan, the 2014 ACS Chemical Biology Lectureship Award Winner. <i>ACS Chemical Biology</i> , 2014 , 9, 1221-3	4.9	
159	Isoprenoid phosphonophosphates as glycosyltransferase acceptor substrates. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8492-5	16.4	17
158	Rhamnose glycoconjugates for the recruitment of endogenous anti-carbohydrate antibodies to tumor cells. <i>ChemBioChem</i> , 2014 , 15, 1393-8	3.8	49
157	Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18126-31	11.5	42
156	Chemistry. A path to complex carbohydrates. <i>Science</i> , 2013 , 341, 357-8	33.3	7
155	Synthesis of lipid-linked arabinofuranose donors for glycosyltransferases. <i>Journal of Organic Chemistry</i> , 2013 , 78, 2128-33	4.2	8
154	Glycopolymer probes of signal transduction. <i>Chemical Society Reviews</i> , 2013 , 42, 4476-91	58.5	251
153	Synthesis of functionalizable and degradable polymers by ring-opening metathesis polymerization. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 5061-4	16.4	57

(2010-2013)

152	UDP-galactopyranose mutase in nematodes. <i>Biochemistry</i> , 2013 , 52, 4391-8	3.2	20
151	Synthesis of Functionalizable and Degradable Polymers by Ring-Opening Metathesis Polymerization. <i>Angewandte Chemie</i> , 2013 , 125, 5165-5168	3.6	10
150	A defined glycosaminoglycan-binding surface facilitates endoderm differentiation of human embryonic stem cells. <i>FASEB Journal</i> , 2013 , 27, 594.5	0.9	
149	Signals from the Surface to Control Cell Fate Decisions. <i>FASEB Journal</i> , 2013 , 27, 213.3	0.9	
148	Fluorosugar chain termination agents as probes of the sequence specificity of a carbohydrate polymerase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6552-5	16.4	34
147	Small-molecule-modified surfaces engage cells through the ⊞ integrin. <i>ACS Chemical Biology</i> , 2012 , 7, 518-25	4.9	18
146	Quinoxalinone Inhibitors of the Lectin DC-SIGN. Chemical Science, 2012, 3, 772-777	9.4	53
145	A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. <i>Biochemistry</i> , 2012 , 51, 1148-59	3.2	29
144	An asymmetric synthesis of L-pyrrolysine. <i>Organic Letters</i> , 2012 , 14, 1378-81	6.2	18
143	Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. <i>ACS Nano</i> , 2012 , 6, 10168-77	16.7	115
142	Noncarbohydrate glycomimetics and glycoprotein surrogates as DC-SIGN antagonists and agonists. <i>ACS Chemical Biology</i> , 2012 , 7, 1603-8	4.9	42
141	Tailored Synthetic Surfaces to Control Human Pluripotent Stem Cell Self-Renewal 2012 , 155-165		
140	Protein footprinting in a complex milieu: identifying the interaction surfaces of the chemotaxis adaptor protein CheW. <i>Journal of Molecular Biology</i> , 2011 , 409, 483-95	6.5	21
139	Glycomimetic building blocks: a divergent synthesis of epimers of shikimic acid. <i>Organic Letters</i> , 2011 , 13, 3790-3	6.2	15
138	What lies ahead. <i>Nature</i> , 2011 , 469, 23-5	50.4	13
137	Monitoring processivity and length control of a carbohydrate polymerase. <i>Journal of the American Chemical Society</i> , 2011 , 133, 12758-66	16.4	40
136	Spatial control of cell fate using synthetic surfaces to potentiate TGF-beta signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11745-50	11.5	44
135	Classifying chemoreceptors: quantity versus quality. <i>EMBO Journal</i> , 2010 , 29, 3435-6	13	2

134	Classifying chemoreceptors: quantity versus quality. <i>EMBO Journal</i> , 2010 , 29, 4237-4237	13	78
133	A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. <i>Nature Methods</i> , 2010 , 7, 989-94	21.6	214
132	Unexpected enhancement in biological activity of a GPCR ligand induced by an oligoethylene glycol substituent. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8844-5	16.4	7
131	Peptide ligands that use a novel binding site to target both TGF-Ireceptors. <i>Molecular BioSystems</i> , 2010 , 6, 2392-402		20
130	A general glycomimetic strategy yields non-carbohydrate inhibitors of DC-SIGN. <i>Chemical Communications</i> , 2010 , 46, 6747-9	5.8	53
129	High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. Journal of the American Chemical Society, 2010, 132, 1289-95	16.4	123
128	Chemical approaches to glycobiology. <i>Annual Review of Biochemistry</i> , 2010 , 79, 619-53	29.1	186
127	Synthesis of galactofuranose-based acceptor substrates for the study of the carbohydrate polymerase GlfT2. <i>Bioorganic and Medicinal Chemistry</i> , 2010 , 18, 3753-9	3.4	27
126	Human Embryonic Stem Cells Maintain Pluripotency after E-Cadherin Expression Knockdown. <i>FASEB Journal</i> , 2010 , 24, lb172	0.9	
125	Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2500-5	11.5	92
124	A tethering mechanism for length control in a processive carbohydrate polymerization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 11851-6	11.5	62
123	Flow cytometry reveals that multivalent chemoattractants effect swarmer cell dedifferentiation. <i>ACS Chemical Biology</i> , 2009 , 4, 828-33	4.9	1
122	Structure-based design of a periplasmic binding protein antagonist that prevents domain closure. <i>ACS Chemical Biology</i> , 2009 , 4, 447-56	4.9	19
121	Ligand binding and substrate discrimination by UDP-galactopyranose mutase. <i>Journal of Molecular Biology</i> , 2009 , 391, 327-40	6.5	40
120	ROMP from ROMP: A New Approach to Graft Copolymer Synthesis. <i>Macromolecules</i> , 2009 , 42, 4023-402	 2 <u>7</u> .5	31
119	General synthetic route to cell-permeable block copolymers via ROMP. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7327-33	16.4	104
118	Potent ligands for prokaryotic UDP-galactopyranose mutase that exploit an enzyme subsite. <i>Organic Letters</i> , 2009 , 11, 193-6	6.2	26
117	X-ray crystallography reveals a reduced substrate complex of UDP-galactopyranose mutase poised for covalent catalysis by flavin. <i>Biochemistry</i> , 2009 , 48, 9171-3	3.2	46

116	Synthetic Science: Assembly Required. <i>ACS Chemical Biology</i> , 2008 , 3, 1-2	4.9	4
115	Multivalency in ProteinCarbohydrate Recognition 2008 , 2483-2523		16
114	Inhibitors of UDP-galactopyranose mutase thwart mycobacterial growth. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6706-7	16.4	85
113	Synthesis of fluorogenic polymers for visualizing cellular internalization. <i>Organic Letters</i> , 2008 , 10, 2997	- <u>8.0</u> 00	60
112	A polymeric domain that promotes cellular internalization. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5626-7	16.4	87
111	Chemical probes of bacterial signal transduction reveal that repellents stabilize and attractants destabilize the chemoreceptor array. <i>ACS Chemical Biology</i> , 2008 , 3, 101-9	4.9	23
110	Isotope-coded affinity tags with tunable reactivities for protein footprinting. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 9677-80	16.4	18
109	UDP-galactopyranose mutase: an unexpected ligand-binding mode leads to model of substrate binding. <i>FASEB Journal</i> , 2008 , 22, 1012.9	0.9	1
108	Small molecule probes of mycobacterial cell wall assembly. FASEB Journal, 2008, 22, 532.3	0.9	
107	The polymerase activity of a mycobacterial galactofuranosyltransferase suggests a novel mechanism for template-independent processive polymerization. <i>FASEB Journal</i> , 2008 , 22, 1059.2	0.9	
106	Selective tumor cell targeting using low-affinity, multivalent interactions. <i>ACS Chemical Biology</i> , 2007 , 2, 119-27	4.9	204
105	Activating B cell signaling with defined multivalent ligands. ACS Chemical Biology, 2007, 2, 252-62	4.9	127
104	Defined substrates for human embryonic stem cell growth identified from surface arrays. <i>ACS Chemical Biology</i> , 2007 , 2, 347-55	4.9	122
103	A higher degree of difficulty. ACS Chemical Biology, 2007, 2, 197-9	4.9	
102	Non-carbohydrate inhibitors of the lectin DC-SIGN. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12780-5	16.4	100
101	Solid-phase synthesis of alkanethiols for the preparation of self-assembled monolayers. <i>Langmuir</i> , 2007 , 23, 11164-7	4	19
100	Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues. <i>Biochemistry</i> , 2007 , 46, 6723-32	3.2	54
99	Bifunctional ligands that target cells displaying the alpha v beta3 integrin. <i>ChemBioChem</i> , 2007 , 8, 68-82	23.8	61

98	Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. <i>Protein Science</i> , 2007 , 16, 1032-41	6.3	91
97	Synthetic multivalent ligands as probes of signal transduction. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2348-68	16.4	706
96	Synthetische multivalente Liganden als Sonden fil die Signaltransduktion. <i>Angewandte Chemie</i> , 2006 , 118, 2408-2429	3.6	120
95	Contrast agents for magnetic resonance imaging synthesized with ring-opening metathesis polymerization. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6534-5	16.4	49
94	Phage display affords peptides that modulate beta-amyloid aggregation. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11882-9	16.4	41
93	Fostering major breakthroughs. ACS Chemical Biology, 2006, 1, 1-2	4.9	2
92	Symbiosis: Chemical biology at Wisconsin. ACS Chemical Biology, 2006, 1, 481-4	4.9	
91	N-acylsulfonamide linker activation by Pd-catalyzed allylation. <i>Organic Letters</i> , 2006 , 8, 2483-5	6.2	14
90	Chemical probes of UDP-galactopyranose mutase. <i>Chemistry and Biology</i> , 2006 , 13, 825-37		107
89	Solid-phase synthesis of polymers using the ring-opening metathesis polymerization. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14536-7	16.4	67
88	Link between chemotactic response to Ni2+ and its adsorption onto the Escherichia coli cell surface. <i>Environmental Science & Environmental Science & </i>	10.3	25
87	Synthetic Multivalent Carbohydrate Ligands as Effectors or Inhibitors of Biological Processes 2005 , 575	-608	2
86	Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. <i>Molecular Microbiology</i> , 2005 , 57, 774-85	4.1	44
85	A unique catalytic mechanism for UDP-galactopyranose mutase. <i>Nature Structural and Molecular Biology</i> , 2004 , 11, 539-43	17.6	120
84	Synthetic glycoprotein mimics inhibit L-selectin-mediated rolling and promote L-selectin shedding. <i>Chemistry and Biology</i> , 2004 , 11, 725-32		57
83	Identification of inhibitors for UDP-galactopyranose mutase. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10532-3	16.4	84
82	A polymer scaffold for protein oligomerization. <i>Journal of the American Chemical Society</i> , 2004 , 126, 16	0 & &4	57
81	Arrays for the combinatorial exploration of cell adhesion. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10808-9	16.4	93

80	Improved chemical syntheses of 1- and 5-deazariboflavin. Journal of Organic Chemistry, 2004, 69, 2614-	74.2	12
79	Stereoselective N-glycosylation by Staudinger ligation. <i>Organic Letters</i> , 2004 , 6, 4479-82	6.2	76
78	Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. <i>Science</i> , 2003 , 299, 405-8	33.3	386
77	Visualization and characterization of receptor clusters by transmission electron microscopy. <i>Methods in Enzymology</i> , 2003 , 362, 301-12	1.7	3
76	Parallel synthesis of glycomimetic libraries: targeting a C-type lectin. <i>Organic Letters</i> , 2003 , 5, 1407-10	6.2	33
75	Surface plasmon resonance imaging studies of protein-carbohydrate interactions. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6140-8	16.4	435
74	Multivalency in Biological Systems. <i>NATO Science Series Series II, Mathematics, Physics and Chemistry</i> , 2003 , 345-357		7
73	A Strategy for the Synthesis of Sulfated Peptides. <i>Angewandte Chemie</i> , 2002 , 114, 3599-3601	3.6	16
72	A strategy for the synthesis of sulfated peptides. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3449-51	16.4	36
71	Selective immobilization of multivalent ligands for surface plasmon resonance and fluorescence microscopy. <i>Analytical Biochemistry</i> , 2002 , 305, 149-55	3.1	69
70	Cell aggregation by scaffolded receptor clusters. <i>Chemistry and Biology</i> , 2002 , 9, 163-9		75
69	Inter-receptor communication through arrays of bacterial chemoreceptors. <i>Nature</i> , 2002 , 415, 81-4	50.4	229
68	Synthesis of a multivalent display of a CD22-binding trisaccharide. <i>Carbohydrate Research</i> , 2002 , 337, 1605-13	2.9	36
67	Affinity-based inhibition of beta-amyloid toxicity. <i>Biochemistry</i> , 2002 , 41, 8620-9	3.2	105
66	Conserved amplification of chemotactic responses through chemoreceptor interactions. <i>Journal of Bacteriology</i> , 2002 , 184, 4981-7	3.5	27
65	Synthesis and applications of end-labeled neoglycopolymers. <i>Organic Letters</i> , 2002 , 4, 2293-6	6.2	102
64	p-Methoxybenzyl ether cleavage by polymer-supported sulfonamides. <i>Organic Letters</i> , 2002 , 4, 1131-3	6.2	24
63	Control of multivalent interactions by binding epitope density. <i>Journal of the American Chemical Society</i> , 2002 , 124, 1615-9	16.4	329

62	Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14922-33	16.4	588
61	Designed potent multivalent chemoattractants for Escherichia coli. <i>Bioorganic and Medicinal Chemistry</i> , 2001 , 9, 2387-93	3.4	35
60	Improved chemical synthesis of UDP-galactofuranose. Organic Letters, 2001, 3, 2517-9	6.2	78
59	High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide. <i>Organic Letters</i> , 2001 , 3, 9-12	6.2	203
58	Multivalency in Protein-Carbohydrate Recognition 2001 , 1817-1861		3
57	Chemical glycobiology. <i>Science</i> , 2001 , 291, 2357-64	33.3	1558
56	Glycosyl sulfonylcarbamates: new glycosyl donors with tunable reactivity. <i>Journal of the American Chemical Society</i> , 2001 , 123, 3379-80	16.4	42
55	Structure-function relationships for inhibitors of beta-amyloid toxicity containing the recognition sequence KLVFF. <i>Biochemistry</i> , 2001 , 40, 7882-9	3.2	194
54	Synthesis of cyclic sulfates by halocyclization. <i>Organic Letters</i> , 2001 , 3, 3557-9	6.2	12
53	The Chemistry and Biology of Multivalent Saccharide Displays 2001 , 221-275		7
52	Multivalency in Protein-Carbohydrate Recognition 2001 , 1817-1861		6
51	Visualization of Single Multivalent Receptor ligand Complexes by Transmission Electron Microscopy. <i>Angewandte Chemie</i> , 2000 , 112, 4741-4744	3.6	6
50	Visualization of Single Multivalent Receptor Ligand Complexes by Transmission Electron Microscopy. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 4567-4570	16.4	48
49	Synthetic multivalent ligands in the exploration of cell-surface interactions. <i>Current Opinion in Chemical Biology</i> , 2000 , 4, 696-703	9.7	471
48	Tuning chemotactic responses with synthetic multivalent ligands. Chemistry and Biology, 2000, 7, 583-9	1	78
47	Synthesis of end-labeled multivalent ligands for exploring cell-surface-receptor-ligand interactions. <i>Chemistry and Biology</i> , 2000 , 7, 9-16		116
46	Motility and chemotaxis of filamentous cells of Escherichia coli. <i>Journal of Bacteriology</i> , 2000 , 182, 433	7-43	71
45	Evolutionary conservation of methyl-accepting chemotaxis protein location in Bacteria and Archaea. <i>Journal of Bacteriology</i> , 2000 , 182, 6499-502	3.5	85

44	In vitro and in vivo inhibition of anti-gal secreting cells. <i>Transplantation Proceedings</i> , 2000 , 32, 856	1.1	
43	Staudinger ligation: a peptide from a thioester and azide. <i>Organic Letters</i> , 2000 , 2, 1939-41	6.2	435
42	Chapter 29. Principles for multivalent ligand design. <i>Annual Reports in Medicinal Chemistry</i> , 2000 , 35, 321-330	1.6	50
41	Synergistic Formation of Soluble Lectin Clusters by a Templated Multivalent Saccharide Ligand. Journal of the American Chemical Society, 2000 , 122, 4518-4519	16.4	72
40	Visualization of Single Multivalent Receptor-Ligand Complexes by Transmission Electron Microscopy The authors thank Colleen Lavin (UW Madison, Microscopy Resource) and Kim Dickson for experimental support. This work was supported in part by the NIH (GM 55984). J.E.G. acknowledges the NIH Biotechnology Training Grant for support (T32GM08349). L.E.S. was	16.4	6
39	Inhibition of L-selectin-mediated leukocyte rolling by synthetic glycoprotein mimics. <i>Journal of lition Biological Chemistry</i> , 1999 , 274, 5271-8	5.4	81
38	Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. <i>Biochemistry</i> , 1999 , 38, 3570-8	3.2	203
37	A General Synthetic Route to Defined, Biologically Active Multivalent Arrays. <i>Journal of the American Chemical Society</i> , 1999 , 121, 6193-6196	16.4	190
36	Synthetic ligands point to cell surface strategies. <i>Nature</i> , 1998 , 392, 30-1	50.4	123
35	Transforming the cell surface through proteolysis. <i>Chemistry and Biology</i> , 1998 , 5, R49-62		2.4
			34
34	Glycoprotein-inspired materials promote the proteolytic release of cell surface L-selectin. Bioorganic and Medicinal Chemistry, 1998 , 6, 1293-9	3.4	50
34		3.4	
	Bioorganic and Medicinal Chemistry, 1998 , 6, 1293-9		50
33	Bioorganic and Medicinal Chemistry, 1998, 6, 1293-9 Bioactive Polymers. <i>Topics in Organometallic Chemistry</i> , 1998, 199-231 Probing Low Affinity and Multivalent Interactions with Surface Plasmon Resonance: Ligands for	0.6	50
33	Bioorganic and Medicinal Chemistry, 1998, 6, 1293-9 Bioactive Polymers. <i>Topics in Organometallic Chemistry</i> , 1998, 199-231 Probing Low Affinity and Multivalent Interactions with Surface Plasmon Resonance: Ligands for Concanavalin A. <i>Journal of the American Chemical Society</i> , 1998, 120, 10575-10582	0.6	50
33 32 31	Bioactive Polymers. <i>Topics in Organometallic Chemistry</i> , 1998 , 199-231 Probing Low Affinity and Multivalent Interactions with Surface Plasmon Resonance: Ligands for Concanavalin A. <i>Journal of the American Chemical Society</i> , 1998 , 120, 10575-10582 The Molecular Recognition of Saccharides and Glycoprotein-Inspired Materials 1998 , 183-212 Solution conformation of Lewis aderived selectin ligands is unaffected by anionic substituents at	0.6	50 28 290
33 32 31 30	Bioactive Polymers. <i>Topics in Organometallic Chemistry</i> , 1998 , 199-231 Probing Low Affinity and Multivalent Interactions with Surface Plasmon Resonance: Ligands for Concanavalin A. <i>Journal of the American Chemical Society</i> , 1998 , 120, 10575-10582 The Molecular Recognition of Saccharides and Glycoprotein-Inspired Materials 1998 , 183-212 Solution conformation of Lewis aderived selectin ligands is unaffected by anionic substituents at the 3Qand 6Qpositions. <i>Glycobiology</i> , 1997 , 7, 337-47 Varying the Size of Multivalent Ligands: The Dependence of Concanavalin A Binding on	o.6 16.4 5.8	50 28 290 8

26	Neoglycopolymers produced by aqueous ring-opening metathesis polymerization: decreasing saccharide density increases activity. <i>Journal of Molecular Catalysis A</i> , 1997 , 116, 209-216		55
25	Neoglycopolymer inhibitors of the selectins. <i>Tetrahedron</i> , 1997 , 53, 11937-11952	2.4	89
24	Synthesis of sulfated trisaccharide ligands for the selectins. <i>Tetrahedron</i> , 1997 , 53, 16391-16422	2.4	32
23	Para-chlorobenzyl protecting groups as stabilizers of the glycosidic linkage: Synthesis of the 3?-O-sulfated Lewis x trisaccharide. <i>Tetrahedron Letters</i> , 1997 , 38, 6985-6988	2	29
22	L-selectin-carbohydrate interactions: relevant modifications of the Lewis x trisaccharide. <i>Biochemistry</i> , 1996 , 35, 14862-7	3.2	76
21	Reactivity of a 2EThio Nucleotide Analog. <i>Journal of the American Chemical Society</i> , 1996 , 118, 11715-11	71169.4	51
20	Fluorescence Anisotropy Assays Reveal Affinities of C- and O-Glycosides for Concanavalin A(1). Journal of Organic Chemistry, 1996 , 61, 534-538	4.2	56
19	Recognition Specificity of Neoglycopolymers Prepared by Ring-Opening Metathesis Polymerization. <i>Journal of the American Chemical Society</i> , 1996 , 118, 2297-2298	16.4	234
18	Specificity of C-glycoside complexation by mannose/glucose specific lectins. <i>Biochemistry</i> , 1996 , 35, 36	19 . 24	95
17	A strategy for designing inhibitors of beta-amyloid toxicity. <i>Journal of Biological Chemistry</i> , 1996 , 271, 29525-8	5.4	180
16	Tin-mediated phosphorylation: Synthesis and selectin binding of a phospho Lewis a analog. <i>Tetrahedron Letters</i> , 1996 , 37, 1953-1956	2	24
15	Convergent synthesis of sulfated bivalent glycopeptides as selectin ligands. <i>Tetrahedron Letters</i> , 1996 , 37, 2907-2910	2	17
14	Strength in numbers: non-natural polyvalent carbohydrate derivatives. <i>Chemistry and Biology</i> , 1996 , 3, 71-7		336
13	Preparation of (r)-(+)-7-oxabicyclo[2.2.1]hept-5-ene-exo-2-carboxylic acid, a precursor to substrates for the ring opening metathesis polymerization. <i>Tetrahedron Letters</i> , 1996 , 37, 8853-8856	2	17
12	Selectin-Saccharide Interactions: Revealing Structure-Function Relationships with Chemical Synthesis. <i>Journal of Organic Chemistry</i> , 1995 , 60, 6254-6255	4.2	36
11	Stereoselective, Lewis acid-catalyzed glycosylation of alcohols by glucose 1,2-cyclic sulfites. <i>Tetrahedron Letters</i> , 1994 , 35, 7335-7338	2	43
10	Synthesis of Cell Agglutination Inhibitors by Aqueous Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 1994 , 116, 12053-12054	16.4	206
9	Flanking sequence effects within the pyrimidine triple-helix motif characterized by affinity cleaving. <i>Biochemistry</i> , 1992 , 31, 2829-34	3.2	100

LIST OF PUBLICATIONS

8	Recognition of all four base pairs of double-helical DNA by triple-helix formation: design of nonnatural deoxyribonucleosides for pyrimidine.cntdot.purine base pair binding. <i>Journal of the American Chemical Society</i> , 1992 , 114, 7976-7982	16.4	113
7	Further investigations of the type II diels-alder route to the bicyclic core of esperamicin/calichemicin reveal a regiochemical misassignment: Meta vs. para selectivity. <i>Tetrahedron Letters</i> , 1989 , 30, 433-436	2	29
6	Model of the interactions of calichemicin gamma 1 with a DNA fragment from pBR322. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1989 , 86, 1105-9	11.5	78
5	Synthesis of the bicyclic core of the esperamicin/calichemicin class of antitumor agents. <i>Journal of the American Chemical Society</i> , 1988 , 110, 631-633	16.4	72
4	Structure-activity relationships of 6-(heterocyclyl)-methylene penam sulfones; a new class of beta-lactamase inhibitors. <i>Journal of Antibiotics</i> , 1987 , 40, 803-22	3.7	29
3	The Search for Chemical Probes to Illuminate Carbohydrate Function635-667		1
2	Antibiotic action revealed by real-time imaging of the mycobacterial membrane		2
1	Syntheses and Applications of Bioactive Polymers Generated by Ring-Opening Metathesis Polymerizati	ion180	-2 ,2 5