Ali Reza Amani-Ghadim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8750617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. Journal of Hazardous Materials, 2009, 161, 1225-1233.	6.5	279
2	Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of Hazardous Materials, 2007, 148, 566-572.	6.5	210
3	Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network. Journal of Hazardous Materials, 2009, 171, 484-490.	6.5	166
4	Optimization of electrocoagulation process for removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions. Chemical Engineering and Processing: Process Intensification, 2013, 64, 68-78.	1.8	123
5	Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm. Journal of Industrial and Engineering Chemistry, 2015, 21, 1286-1294.	2.9	61
6	Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Applied Catalysis B: Environmental, 2015, 163, 539-546.	10.8	61
7	ZnS quantum dot intercalated layered double hydroxide semiconductors for solar water splitting and organic pollutant degradation. Journal of Materials Chemistry A, 2019, 7, 11408-11422.	5.2	57
8	Synthesis of rod-like α-FeOOH nanoparticles and its photocatalytic activity in degradation of an azo dye: Empirical kinetic model development. Journal of Molecular Catalysis A, 2015, 408, 60-68.	4.8	52
9	Non-Calcined Layer-Pillared Mn _{0.5} Zn _{0.5} Bimetallic–Organic Framework as a Promising Electrocatalyst for Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61, 9514-9522.	1.9	47
10	Praseodymium-doped ZnS nanomaterials: Hydrothermal synthesis and characterization with enhanced visible light photocatalytic activity. Journal of Industrial and Engineering Chemistry, 2016, 34, 41-50.	2.9	43
11	Visible-light photocatalytic activity of chitosan/polyaniline/CdS nanocomposite: Kinetic studies and artificial neural network modeling. Applied Catalysis A: General, 2016, 514, 60-70.	2.2	39
12	Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology. Applied Surface Science, 2016, 383, 9-18.	3.1	38
13	Synthesis and characterization of samarium-doped ZnS nanoparticles: A novel visible light responsive photocatalyst. Materials Research Bulletin, 2016, 76, 411-421.	2.7	37
14	Effect of gadollunium doping on visible light photocatalytic performance of Ag3PO4: Evaluation of activity in degradation of an anthraquinone dye and mechanism study. Journal of Molecular Catalysis A, 2017, 426, 257-270.	4.8	36
15	Neodymium doped mixed metal oxide derived from CoAl-layered double hydroxide: Considerable enhancement in visible light photocatalytic activity. Journal of Industrial and Engineering Chemistry, 2018, 68, 311-324.	2.9	34
16	The role of carbon nanotube in zinc stannate photocatalytic performance improvement: Experimental and kinetic evidences. Applied Catalysis B: Environmental, 2017, 205, 559-568.	10.8	33
17	Use of hydrophilic polymeric stabilizer to improve strength and durability of fine-grained soils. Cold Regions Science and Technology, 2019, 157, 187-195.	1.6	32
18	Influence of solvent type on the characteristics and photocatalytic activity of TiO2 nanoparticles prepared by the sol–gel method. Micro and Nano Letters, 2011, 6, 244.	0.6	29

#	Article	IF	CITATIONS
19	FeO nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus) Tj ETQq1 1 0.784	314 rgBT 1.1	Överlock 10 28
20	Performance of chitosan based nanocomposite hollow fibers in the removal of selenium(IV) from water. Chemical Engineering Research and Design, 2017, 117, 309-317.	2.7	26
21	Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties. Solar Energy, 2019, 181, 325-332.	2.9	26
22	Visible light photocatalytic activity enhancing of MTiO3 perovskites by M cation (M = Co, Cu, and Ni) substitution and Gadolinium doping. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112461.	2.0	26
23	Fabrication of a novel ZnO/MMO/CNT nanohybrid derived from multi-cationic layered double hydroxide for photocatalytic degradation of azo dye under visible light. RSC Advances, 2015, 5, 19675-19685.	1.7	25
24	Improving photocatalytic activity of the ZnS QDs via lanthanide doping and photosensitizing with GO and g-C3N4 for degradation of an azo dye and bisphenol-A under visible light irradiation. Chemosphere, 2022, 295, 133917.	4.2	21
25	Removal of the Alphazurine FG Dye from Simulated Solution by Electrocoagulation. Clean - Soil, Air, Water, 2010, 38, 401-408.	0.7	20
26	Structural properties and photocatalytic degradation efficiency of CuO and erbium doped CuO nanostructures prepared by thermal decomposition of some Cu-salophen type complexes as precursors. Materials Chemistry and Physics, 2020, 243, 122635.	2.0	19
27	Combination of perovskite and magnetic inverse spinel structures to improve microwave absorption properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 225, 75-85.	1.7	18
28	Screening of pectinase-producing bacteria from farmlands and optimization of enzyme production from selected strain by RSM. Folia Microbiologica, 2020, 65, 705-719.	1.1	18
29	Mg nanoparticles core-CdS QDs shell heterostructures with ZnS passivation layer for efficient quantum dot sensitized solar cell. Electrochimica Acta, 2019, 308, 25-34.	2.6	16
30	Loading GO/ZnFe2O4/NiO nanocomposite as a hybrid dielectric/magnetic material into polyurethane foam for induction of radar absorbing properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 5107-5116.	1.1	16
31	Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers. Scientific Reports, 2021, 11, 19	33 ¹ 96	15
32	Comparative study of removal of reactive dye by LDHs: The effect of cation variety. Environmental Progress and Sustainable Energy, 2017, 36, 372-381.	1.3	12
33	CdTe quantum dots incorporated in CoNiAl layered double hydroxide interlayer spaces as a highly efficient visible light driven photocatalyst for degradation of an azo dye and Bisphenol A. Journal of Alloys and Compounds, 2022, 898, 162768.	2.8	10
34	Novel Visible Light Photocatalyst Based on Holmium-Doped Cadmium Sulfide: Synthesis, Characterization and Kinetics Study. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1-12.	1.9	9
35	Dysprosium doping in CdTe@CdS type II core/shell and cosensitizing with CdSe for photocurrent and efficiency enhancement in quantum dot sensitized solar cells. Journal of Power Sources, 2022, 539, 231624.	4.0	9
36	Mesoporous CuZnAl-layered double hydroxide/graphene oxide nanohybrid as an energy storage electrode for supercapacitor application. Bulletin of Materials Science, 2021, 44, 1.	0.8	8

#	Article	IF	CITATIONS
37	Application of nanotechnology in drinking water purification. , 2017, , 119-167.		6
38	Sonochemical Synthesis, Characterization and Optical Properties of Tb-Doped CdSe Nanoparticles: Synergistic Effect between Photocatalysis and Sonocatalysis. Nanomaterials, 2021, 11, 378.	1.9	6
39	Photocatalytic activity enhancement of carbonâ€doped <scp>gâ€C₃N₄</scp> by synthesis of nanocomposite with <scp>Ag₂O</scp> and <scp>î±â€Fe₂O₃</scp> . Journal of the Chinese Chemical Society, 2021, 68, 2118-2131.	0.8	5
40	Enhancement in photovoltaic properties of exciplex quantum dot sensitized solar cells via gadolinium doping and formation of type II Core/Shell (Gd-doped CdS@CdSe) structure. Solar Energy, 2022, 231, 402-413.	2.9	5
41	Targeted design of polyaniline-graphene oxide, barium-strontium titanate, hard-soft ferrite, and polyester multi-phase nanocomposite for highly efficient microwave absorption. Ceramics International, 2021, 47, 21334-21342.	2.3	3
42	The role of MnO ₂ /polyaniline/Y-type barium hexaferrite (Al ₂ Y,) Tj ETQq0 0 0 rgBT /Overla absorption properties of polyester coatings. New Journal of Chemistry, 2021, 45, 3252-3262.	ock 10 Tf 5 1.4	50 547 Td (I 1
43	Abatement efficiency and fate of EPA-Listed PAHs in aqueous medium under simulated solar and UV-C irradiations, and combined process with TiO2 and H2O2. Su Ürünleri Dergisi, 2020, 37, 15-27.	0.1	1
44	Assessment of environmental applicability of TiO2 coated self-cleaning glass for photocatalytic degradation of estrone, 17l²-estradiol and their byproducts. Su Ürünleri Dergisi, 2019, 36, 347-359.	0.1	0