Silvia Saviozzi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8750354/silvia-saviozzi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23 2,510 21 34 g-index

34 2,750 6.9 3.87 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
33	Micro- and Macrostructured PLGA/Gelatin Scaffolds Promote Early Cardiogenic Commitment of Human Mesenchymal Stem Cells In Vitro. <i>Stem Cells International</i> , 2016 , 2016, 7176154	5	16
32	ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. <i>International Journal of Cancer</i> , 2015 , 136, 259	98 ⁷ - 6 09	38
31	Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells. <i>Journal of Cellular and Molecular Medicine</i> , 2015 , 19, 734-43	5.6	42
30	Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart. <i>Journal of Nanobiotechnology</i> , 2015 , 13, 77	9.4	14
29	The effect of bioartificial constructs that mimic myocardial structure and biomechanical properties on stem cell commitment towards cardiac lineage. <i>Biomaterials</i> , 2014 , 35, 92-104	15.6	22
28	Fluorescent silica nanoparticles improve optical imaging of stem cells allowing direct discrimination between live and early-stage apoptotic cells. <i>Small</i> , 2012 , 8, 3192-200	11	33
27	High basal ⊞2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. <i>Stem Cells</i> , 2012 , 30, 1414-23	5.8	62
26	p63 and p73 isoform expression in non-small cell lung cancer and corresponding morphological normal lung tissue. <i>Journal of Thoracic Oncology</i> , 2011 , 6, 473-81	8.9	28
25	Aurora Kinase A expression is associated with lung cancer histological-subtypes and with tumor de-differentiation. <i>Journal of Translational Medicine</i> , 2011 , 9, 100	8.5	43
24	Involvement of inflammatory chemokines in survival of human monocytes fed with malarial pigment. <i>Infection and Immunity</i> , 2010 , 78, 4912-21	3.7	45
23	Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. <i>Journal of the American Society of Nephrology: JASN</i> , 2009 , 20, 1053-67	12.7	949
22	Non-small cell lung cancer exhibits transcript overexpression of genes associated with homologous recombination and DNA replication pathways. <i>Cancer Research</i> , 2009 , 69, 3390-6	10.1	54
21	Polymerase eta mRNA expression predicts survival of non-small cell lung cancer patients treated with platinum-based chemotherapy. <i>Clinical Cancer Research</i> , 2009 , 15, 1039-45	12.9	82
20	Effects of Src kinase inhibition induced by dasatinib in non-small cell lung cancer cell lines treated with cisplatin. <i>Molecular Cancer Therapeutics</i> , 2009 , 8, 3066-74	6.1	48
19	Differential Thymidylate Synthase Expression in Different Variants of Large-Cell Carcinoma of the Lung. <i>Clinical Cancer Research</i> , 2009 , 15, 7547-7552	12.9	60
18	Excision repair cross complementing-1 and topoisomerase IIalpha gene expression in small-cell lung cancer patients treated with platinum and etoposide: a retrospective study. <i>Journal of Thoracic Oncology</i> , 2008 , 3, 583-9	8.9	36
17	Oncoantigens as anti-tumor vaccination targets: the chance of a lucky strike?. <i>Cancer Immunology, Immunotherapy</i> , 2008 , 57, 1685-94	7.4	10

LIST OF PUBLICATIONS

Epidermal growth factor ligand/receptor loop and downstream signaling activation pattern in completely resected nonsmall cell lung cancer. <i>Cancer</i> , 2007 , 110, 1321-8	6.4	18
Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer. <i>BMC Cancer</i> , 2006 , 6, 200	4.8	71
Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. <i>Cancer</i> , 2006 , 107, 1589-96	6.4	326
The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity. <i>Cell Cycle</i> , 2006 , 5, 78-87	4.7	15
Genes regulated by hepatocyte growth factor as targets to sensitize ovarian cancer cells to cisplatin. <i>Molecular Cancer Therapeutics</i> , 2006 , 5, 1126-35	6.1	18
Piroxicam and cisplatin in a mouse model of peritoneal mesothelioma. <i>Clinical Cancer Research</i> , 2006 , 12, 6133-43	12.9	37
ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. <i>Annals of Oncology</i> , 2006 , 17, 1818-25	510.3	263
Microarray data analysis and mining. Methods in Molecular Medicine, 2004, 94, 67-90		7
Six novel ATM mutations in Italian patients with classical ataxia-telangiectasia. <i>Human Mutation</i> , 2003 , 21, 450	4.7	4
Microarray probe expression measures, data normalization and statistical validation. <i>Comparative and Functional Genomics</i> , 2003 , 4, 442-6		8
A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA. <i>Journal of Medical Genetics</i> , 2002 , 39, 57-61	5.8	38
The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein. <i>Journal of Biological Chemistry</i> , 2001 , 276, 14161-9	5.4	42
ATM protein and p53-serine 15 phosphorylation in ataxia-telangiectasia (AT) patients and at heterozygotes. <i>British Journal of Cancer</i> , 2000 , 82, 1938-45	8.7	39
Molecular characterization of immunoglobulin G4 gene isoallotypes. <i>International Journal of Immunogenetics</i> , 1998 , 25, 349-55		21
The G4 gene is duplicated in 44% of human immunoglobulin heavy chain constant region haplotypes. <i>Human Genetics</i> , 1997 , 100, 84-9	6.3	15
Hormonal control of growth factor receptor expression. <i>Annals of the New York Academy of</i>	6.5	6
	Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer. <i>BMC Cancer</i> , 2006, 6, 200 Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. <i>Cancer</i> , 2006, 107, 1589-96 The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity. <i>Cell Cycle</i> , 2006, 5, 78-87 Genes regulated by hepatocyte growth factor as targets to sensitize ovarian cancer cells to cisplatin. <i>Molecular Cancer Therapeutics</i> , 2006, 5, 1126-35 Piroxicam and cisplatin in a mouse model of peritoneal mesothelioma. <i>Clinical Cancer Research</i> , 2006, 12, 6133-43 ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. <i>Annals of Oncology</i> , 2006, 17, 1818-25 Microarray data analysis and mining. <i>Methods in Molecular Medicine</i> , 2004, 94, 67-90 Six novel ATM mutations in Italian patients with classical ataxia-telangiectasia. <i>Human Mutation</i> , 2003, 21, 450 Microarray probe expression measures, data normalization and statistical validation. <i>Comparative and Functional Genomics</i> , 2003, 4, 442-6 A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030C/7481insA. <i>Journal of Medical Genetics</i> , 2002, 39, 57-61 The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein. <i>Journal of Biological Chemistry</i> , 2001, 276, 14161-9 ATM protein and p53-serine 15 phosphorylation in ataxia-telangiectasia (AT) patients and at heterozygotes. <i>British Journal of Cancer</i> , 2000, 82, 1938-45 Molecular characterization of immunoglobulin G4 gene isoallotypes. <i>International Journal of Immunogenetics</i> , 1998, 25, 349-55	Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer. BMC Cancer, 2006, 6, 200 Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer, 2006, 107, 1589-96 The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity. Cell Cycle, 2006, 5, 78-87 Genes regulated by hepatocyte growth factor as targets to sensitize ovarian cancer cells to cisplatin. Molecular Cancer Therapeutics, 2006, 5, 1126-35 Piroxicam and cisplatin in a mouse model of peritoneal mesothelioma. Clinical Cancer Research, 2006, 12, 6133-43 ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Annals of Oncology, 2006, 17, 1818-25 10.3 Microarray data analysis and mining. Methods in Molecular Medicine, 2004, 94, 67-90 Six novel ATM mutations in Italian patients with classical ataxia-telangiectasia. Human Mutation, 2003, 21, 450 Microarray probe expression measures, data normalization and statistical validation. Comparative and Functional Genomics, 2003, 4, 442-6 Alate onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA. Journal of Medical Genetics, 2002, 39, 57-61 The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein. Journal of Biological Chemistry, 2001, 276, 14161-9 ATM protein and p53-serine 15 phosphorylation in ataxia-telangiectasia (AT) patients and at heterozygotes. British Journal of Cancer, 2000, 82, 1938-45 Molecular characterization of immunoglobulin G4 gene isoallotypes. International Journal of Immunogenetics, 1998, 25, 349-55 The G4 gene is duplicated in 44% of human immunoglobulin heavy chain constant region haplotypes. Human Genetics, 1997, 100, 84-9