## Esteban Broitman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8749552/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Role of nitrogen in the formation of hard and elasticCNxthin films by reactive magnetron sputtering.<br>Physical Review B, 1999, 59, 5162-5169.                                                                                                | 1.1 | 446       |
| 2  | Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview. Tribology<br>Letters, 2017, 65, 1.                                                                                                                    | 1.2 | 329       |
| 3  | Reactive magnetron sputter deposited CNx: Effects of N2 pressure and growth temperature on film composition, bonding, and microstructure. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2696-2701.         | 0.9 | 172       |
| 4  | Carbon nitride nanotubulite – densely-packed and well-aligned tubular nanostructures. Chemical<br>Physics Letters, 1999, 300, 695-700.                                                                                                         | 1.2 | 137       |
| 5  | Effect of chemical sputtering on the growth and structural evolution of magnetron sputtered CNx thin films. Thin Solid Films, 2001, 382, 146-152.                                                                                              | 0.8 | 94        |
| 6  | Mechanical and tribological properties of CNx films deposited by reactive magnetron sputtering.<br>Wear, 2001, 248, 55-64.                                                                                                                     | 1.5 | 94        |
| 7  | Microstructure and corrosion behaviour of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel. Surface and Coatings Technology, 2004, 187, 63-69.                                                                                   | 2.2 | 89        |
| 8  | Structural, mechanical and tribological behavior of fullerene-like and amorphous carbon nitride coatings. Diamond and Related Materials, 2004, 13, 1882-1888.                                                                                  | 1.8 | 76        |
| 9  | Microstructural and topographical studies of DC-pulsed plasma nitrided AISI 4140 low-alloy steel.<br>Surface and Coatings Technology, 2005, 200, 2391-2397.                                                                                    | 2.2 | 75        |
| 10 | Influence of plasma parameters on the growth and properties of magnetron sputtered CNx thin films.<br>Journal of Applied Physics, 2000, 88, 524-532.                                                                                           | 1.1 | 74        |
| 11 | Carbon nitride films on orthopedic substrates. Diamond and Related Materials, 2000, 9, 1984-1991.                                                                                                                                              | 1.8 | 61        |
| 12 | Electrical and optical properties of CNx(0⩽x⩽0.25) films deposited by reactive magnetron sputtering.<br>Journal of Applied Physics, 2001, 89, 1184-1190.                                                                                       | 1.1 | 58        |
| 13 | Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique.<br>Physical Chemistry Chemical Physics, 2013, 15, 11113.                                                                                         | 1.3 | 55        |
| 14 | Friction and rolling–sliding wear of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel.<br>Wear, 2006, 260, 479-485.                                                                                                              | 1.5 | 53        |
| 15 | Stress development during deposition of CNx thin films. Applied Physics Letters, 1998, 72, 2532-2534.                                                                                                                                          | 1.5 | 52        |
| 16 | Thermal stability of carbon nitride thin films. Journal of Materials Research, 2001, 16, 3188-3201.                                                                                                                                            | 1.2 | 49        |
| 17 | Growth, structure, and mechanical properties of CN[sub x]H[sub y] films deposited by dc magnetron<br>sputtering in N[sub 2]/Ar/H[sub 2] discharges. Journal of Vacuum Science and Technology A: Vacuum,<br>Surfaces and Films, 2000, 18, 2349. | 0.9 | 48        |
| 18 | Characterization of ZnO and ZnO:Al thin films deposited by the sol–gel dip-coating technique. Thin<br>Solid Films, 2008, 517, 1077-1080.                                                                                                       | 0.8 | 47        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hard and elastic epitaxial ZrB2 thin films on Al2O3(0001) substrates deposited by magnetron sputtering from a ZrB2 compound target. Acta Materialia, 2016, 111, 166-172.                    | 3.8 | 47        |
| 20 | Adaptive hard and tough mechanical response in single-crystal B1 VNx ceramics via control of anion vacancies. Acta Materialia, 2020, 192, 78-88.                                            | 3.8 | 46        |
| 21 | Reactive magnetron sputtering of CNx thin films at different substrate bias. Thin Solid Films, 1997, 308-309, 223-227.                                                                      | 0.8 | 41        |
| 22 | Dangling bond energetics in carbon nitride and phosphorus carbide thin films with fullerene-like and amorphous structure. Chemical Physics Letters, 2009, 482, 110-113.                     | 1.2 | 41        |
| 23 | The nature of the frictional force at the macro-, micro-, and nano-scales. Friction, 2014, 2, 40-46.                                                                                        | 3.4 | 41        |
| 24 | Tribocorrosion behavior and ions release of CoCrMo alloy coated with a TiAlVCN/CN multilayer in simulated body fluid plus bovine serum albumin. Tribology International, 2015, 81, 159-168. | 3.0 | 41        |
| 25 | Water adsorption on fullerene-like carbon nitride overcoats. Thin Solid Films, 2008, 517, 1106-1110.                                                                                        | 0.8 | 40        |
| 26 | Microstructural evolution of sol–gel derived ZnO thin films. Thin Solid Films, 2010, 518, 6792-6798.                                                                                        | 0.8 | 39        |
| 27 | Age hardening in (Ti 1â^'x Al x )B 2+Δ thin films. Scripta Materialia, 2017, 127, 122-126.                                                                                                  | 2.6 | 38        |
| 28 | Highly stable, mesoporous mixed lanthanum–cerium oxides with tailored structure and reducibility.<br>Journal of Materials Science, 2011, 46, 2928-2937.                                     | 1.7 | 35        |
| 29 | Initial Oxidation of Cu( <i>hkl</i> ) Surfaces Vicinal to Cu(111): A High-Throughput Study of Structure<br>Sensitivity. Journal of Physical Chemistry C, 2012, 116, 16054-16062.            | 1.5 | 35        |
| 30 | Industrial-scale deposition of highly adherent CNx films on steel substrates. Surface and Coatings<br>Technology, 2010, 204, 3349-3357.                                                     | 2.2 | 33        |
| 31 | Adhesion improvement of carbon-based coatings through a high ionization deposition technique.<br>Journal of Physics: Conference Series, 2012, 370, 012009.                                  | 0.3 | 33        |
| 32 | Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment.<br>Nanoscale Research Letters, 2012, 7, 146.                                                   | 3.1 | 30        |
| 33 | High temperature nanoindentation hardness and Young's modulus measurement in a neutron-irradiated fuel cladding material. Journal of Nuclear Materials, 2017, 487, 113-120.                 | 1.3 | 30        |
| 34 | Mechanical and tribological properties of CNx films deposited by reactive pulsed laser ablation.<br>Diamond and Related Materials, 2002, 11, 98-104.                                        | 1.8 | 29        |
| 35 | Electrical properties of carbon nitride thin films: Role of morphology and hydrogen content. Journal of Electronic Materials, 2002, 31, L11-L15.                                            | 1.0 | 28        |
| 36 | Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films. Journal of Applied Physics, 2014, 115, .                                                         | 1.1 | 27        |

| #  | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Diamond graphitization by laser-writing for all-carbon detector applications. Diamond and Related<br>Materials, 2017, 75, 25-33.                                                                                                                                                                     | 1.8 | 26        |
| 38 | High-temperature nanoindentation of epitaxial ZrB2 thin films. Scripta Materialia, 2016, 124, 117-120.                                                                                                                                                                                               | 2.6 | 25        |
| 39 | Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method. AIP Advances, 2015, 5, .                                                                                                                                           | 0.6 | 24        |
| 40 | Mechanical properties and tribological behavior at micro and macro-scale of WC/WCN/W hierarchical multilayer coatings. Tribology International, 2016, 101, 194-203.                                                                                                                                  | 3.0 | 24        |
| 41 | Synthesis and characterization of (Ti1-Al )B2+ thin films from combinatorial magnetron sputtering.<br>Thin Solid Films, 2019, 669, 181-187.                                                                                                                                                          | 0.8 | 24        |
| 42 | V0.5Mo0.5Nx/MgO(001): Composition, nanostructure, and mechanical properties as a function of film growth temperature. Acta Materialia, 2017, 126, 194-201.                                                                                                                                           | 3.8 | 23        |
| 43 | Deposition of Y2O3 by plasma enhanced organometallic chemical vapor deposition using an electron cyclotron resonance source. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 1870-1874.                                                                            | 0.9 | 22        |
| 44 | Growth of CNx/BN:C multilayer films by magnetron sputtering. Thin Solid Films, 2000, 360, 17-23.                                                                                                                                                                                                     | 0.8 | 20        |
| 45 | Structural and mechanical properties of diamond-like carbon films deposited by direct current magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 851-859.                                                                                       | 0.9 | 20        |
| 46 | Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation<br>and pulsed laser deposition techniques. Nuclear Instruments and Methods in Physics Research,<br>Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 729, 451-455. | 0.7 | 19        |
| 47 | Mechanical and tribological properties of CdOÂ+ÂSnO2 thin films prepared by sol–gel. Journal of<br>Sol-Gel Science and Technology, 2015, 74, 114-120.                                                                                                                                                | 1.1 | 18        |
| 48 | Stresses and Cracking During Chromia-Spinel-NiO Cluster Formation in TBC Systems. Journal of Thermal Spray Technology, 2015, 24, 1002-1014.                                                                                                                                                          | 1.6 | 18        |
| 49 | Novel method for <i>in-situ</i> and simultaneous nanofriction and nanowear characterization of materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .                                                                                                        | 0.9 | 17        |
| 50 | Novel transparent MgSiON thin films with high hardness and refractive index. Vacuum, 2016, 131, 1-4.                                                                                                                                                                                                 | 1.6 | 16        |
| 51 | Water adsorption on phosphorous-carbide thin films. Surface and Coatings Technology, 2009, 204, 1035-1039.                                                                                                                                                                                           | 2.2 | 15        |
| 52 | Influence of substrate material on the life of atmospheric plasma sprayed thermal barrier coatings.<br>Surface and Coatings Technology, 2013, 232, 795-803.                                                                                                                                          | 2.2 | 15        |
| 53 | Nanoprobe mechanical and piezoelectric characterization of<br>Sc <i><sub>x</sub></i> Al <sub>1â^'<i>x</i></sub> N(0001) thin films. Physica Status Solidi (A)<br>Applications and Materials Science, 2015, 212, 666-673.                                                                             | 0.8 | 15        |
| 54 | Growth and mechanical properties of 111-oriented V0.5Mo0.5Nx/Al2O3(0001) thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .                                                                                                                             | 0.9 | 15        |

| #  | Article                                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chemical bonding, structure, and hardness of carbon nitride thin films. Diamond and Related<br>Materials, 2000, 9, 1790-1794.                                                                                                                                                                                                   | 1.8 | 14        |
| 56 | Analysis of direct and converse piezoelectric responses from zinc oxide nanowires grown on a conductive fabric. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 579-584.                                                                                                                               | 0.8 | 14        |
| 57 | Ion-plated discontinuous thin film strain gauges. Thin Solid Films, 1998, 317, 440-442.                                                                                                                                                                                                                                         | 0.8 | 13        |
| 58 | Water adsorption on lubricated fullerene-like CNx films. Thin Solid Films, 2006, 515, 979-983.                                                                                                                                                                                                                                  | 0.8 | 13        |
| 59 | The effect of oxygen-plasma treatment on the mechanical and piezoelectrical properties of ZnO nanorods. Chemical Physics Letters, 2014, 608, 235-238.                                                                                                                                                                           | 1.2 | 13        |
| 60 | Characterisation of Pb thin films prepared by the nanosecond pulsed laser deposition technique for photocathode application. Thin Solid Films, 2015, 579, 50-56.                                                                                                                                                                | 0.8 | 13        |
| 61 | Reactive sputtering of CSx thin solid films using CS2 as precursor. Vacuum, 2020, 182, 109775.                                                                                                                                                                                                                                  | 1.6 | 13        |
| 62 | Interactions of SO2 and H2S with amorphous carbon films. Applied Catalysis A: General, 2009, 362, 8-13.                                                                                                                                                                                                                         | 2.2 | 12        |
| 63 | Anisotropies in magnetron sputtered carbon nitride thin films. Applied Physics Letters, 2001, 78, 2703-2705.                                                                                                                                                                                                                    | 1.5 | 11        |
| 64 | Nanomechanical and electrical properties of Nb thin films deposited on Pb substrates by pulsed laser deposition as a new concept photocathode for superconductor cavities. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 804, 132-136. | 0.7 | 11        |
| 65 | Synthesis and characterization of the mechanical and optical properties of Ca-Si-O-N thin films deposited by RF magnetron sputtering. Surface and Coatings Technology, 2017, 315, 88-94.                                                                                                                                        | 2.2 | 11        |
| 66 | Comparative study of macro- and microtribological properties of carbon nitride thin films deposited by HiPIMS. Wear, 2017, 370-371, 1-8.                                                                                                                                                                                        | 1.5 | 11        |
| 67 | Micro-tribological performance of fullerene-like carbon and carbon-nitride surfaces. Tribology<br>International, 2018, 128, 104-112.                                                                                                                                                                                            | 3.0 | 11        |
| 68 | Fullerene-like Carbon Nitride: A New Carbon-based Tribological Coating. , 2008, , 620-653.                                                                                                                                                                                                                                      |     | 11        |
| 69 | Monitoring the structural and chemical properties of CNxthin films during in situ annealing in a TEM.<br>EPJ Applied Physics, 2001, 13, 97-105.                                                                                                                                                                                 | 0.3 | 10        |
| 70 | Structural, electrical, and optical properties of diamondlike carbon films deposited by dc magnetron<br>sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, L23-L27.                                                                                                                  | 0.9 | 10        |
| 71 | Oxidation of Fluorinated Amorphous Carbon ( <i>a</i> -CF <sub><i>x</i></sub> ) Films. Langmuir, 2010, 26, 908-914.                                                                                                                                                                                                              | 1.6 | 10        |
| 72 | Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, 021505.                                                                            | 0.9 | 10        |

Esteban Broitman

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Micro and Macro-Tribology Behavior of a Hierarchical Architecture of a Multilayer TaN/Ta Hard<br>Coating. Coatings, 2020, 10, 263.                                                                                                                               | 1.2 | 10        |
| 74 | Synthesis and properties of CS <sub><i>x</i></sub> F <sub><i>y</i></sub> thin films deposited by reactive magnetron sputtering in an Ar/SF <sub>6</sub> discharge. Journal of Physics Condensed Matter, 2017, 29, 195701.                                        | 0.7 | 9         |
| 75 | Deviations from Matthiessen's rule in continuous metal films. Thin Solid Films, 1996, 277, 192-195.                                                                                                                                                              | 0.8 | 8         |
| 76 | Zinc oxide-based thin film functional layers for chemiresistive sensors. Thin Solid Films, 2012, 520, 6669-6676.                                                                                                                                                 | 0.8 | 8         |
| 77 | Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer<br>grown by reactive magnetron sputtering. Nuclear Instruments & Methods in Physics Research B, 2014,<br>331, 134-139.                                            | 0.6 | 8         |
| 78 | Tribological and Nanomechanical Behavior of Liquid Wood. Journal of Tribology, 2019, 141, .                                                                                                                                                                      | 1.0 | 8         |
| 79 | Oxidation Kinetics of Hydrogenated Amorphous Carbon (a-CHx) Overcoats for Magnetic Data Storage<br>Media. Langmuir, 2007, 23, 5485-5490.                                                                                                                         | 1.6 | 7         |
| 80 | Adsorption of Fluorinated Ethers and Alcohols on Fresh and Oxidized Carbon Overcoats for Magnetic Data Storage. Langmuir, 2007, 23, 1953-1958.                                                                                                                   | 1.6 | 7         |
| 81 | Reactive sputtering of Î^ZrH2 thin films by high power impulse magnetron sputtering and direct<br>current magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and<br>Films, 2014, 32, .                                           | 0.9 | 7         |
| 82 | Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition<br>technique. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,<br>Spectrometers, Detectors and Associated Equipment, 2016, 836, 57-60. | 0.7 | 7         |
| 83 | Pulsed laser deposition of yttrium photocathode suitable for use in radio-frequency guns. Applied<br>Physics A: Materials Science and Processing, 2017, 123, 1.                                                                                                  | 1.1 | 7         |
| 84 | Resistance adjustment in RuO2-based thick film strain-gauges by laser irradiation. Journal of Materials<br>Science Letters, 1997, 16, 1983-1985.                                                                                                                 | 0.5 | 6         |
| 85 | Comparative study on the properties of ZnO nanowires and nanocrystalline thin films. Surface and Coatings Technology, 2012, 213, 59-64.                                                                                                                          | 2.2 | 6         |
| 86 | Mechanical and tribological properties of AlCuFe quasicrystal and Al(Si)CuFe approximant thin films.<br>Journal of Materials Research, 2016, 31, 232-240.                                                                                                        | 1.2 | 6         |
| 87 | Nanotribological behavior of deep cryogenically treated martensitic stainless steel. Beilstein Journal of Nanotechnology, 2017, 8, 1760-1768.                                                                                                                    | 1.5 | 6         |
| 88 | Reactive magnetron sputtering of tungsten target in krypton/trimethylboron atmosphere. Thin Solid<br>Films, 2019, 688, 137384.                                                                                                                                   | 0.8 | 6         |
| 89 | Structural properties of AlSn thin films deposited by magnetron sputtering. Journal of Materials Science Letters, 2001, 20, 1365-1367.                                                                                                                           | 0.5 | 5         |
| 90 | Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application. Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                                                 | 1.1 | 5         |

Esteban Broitman

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films. Applied Surface Science, 2016, 378, 157-162.                                                                                                                          | 3.1 | 5         |
| 92  | The growth of single-crystal films of silver on rock salt by ion plating. Thin Solid Films, 1988, 165, L101-L105.                                                                                                                                      | 0.8 | 4         |
| 93  | Growth of lead thin films on silicon and niobium substrates by sputtering technique. Journal of<br>Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 031502.                                                                      | 0.9 | 4         |
| 94  | Innovations in polymers and composite materials. E-Polymers, 2017, 17, 1.                                                                                                                                                                              | 1.3 | 4         |
| 95  | Mechanical and Tribological Properties of the Oxide Thin Films Obtained by Sol–gel Method. , 2016, , 1-14.                                                                                                                                             |     | 4         |
| 96  | The influence of steel microstructure in high-speed high-load bearing applications. Materials Science and Technology, 2021, 37, 1370-1385.                                                                                                             | 0.8 | 4         |
| 97  | Nano-Scale Friction of Multi-Phase Powder Metallurgy Tool Steels. Advanced Materials Research, 0,<br>1119, 70-74.                                                                                                                                      | 0.3 | 3         |
| 98  | Mechanical and tribological behavior of sol–gel TiO2–CdO films measured at the microscale levels.<br>Journal of Sol-Gel Science and Technology, 2017, 82, 682-691.                                                                                     | 1.1 | 3         |
| 99  | Advances in science and technology of polymers and composite materials. E-Polymers, 2018, 18, 1.                                                                                                                                                       | 1.3 | 3         |
| 100 | Measurement of H and E within and in the neighborhood of a single hydride platelet in Zircaloy-2.<br>Journal of Nuclear Materials, 2020, 531, 152013.                                                                                                  | 1.3 | 3         |
| 101 | Electron stimulated decomposition of fluorocarbons on amorphous hydrogenated carbon (a-CHx) overcoats used in data storage media. Tribology Letters, 2007, 26, 45-51.                                                                                  | 1.2 | 2         |
| 102 | Structural and Mechanical Properties of CN <sub>X </sub> and CP <sub>X<br/></sub> Thin Solid Films. Key Engineering Materials, 0, 488-489, 581-584.                                                                                                    | 0.4 | 2         |
| 103 | Advanced Carbon-Based Coatings. , 2014, , 389-412.                                                                                                                                                                                                     |     | 2         |
| 104 | Non-conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering.<br>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers,<br>Detectors and Associated Equipment, 2014, 752, 27-32. | 0.7 | 2         |
| 105 | Novel insights in polymer and composite materials. E-Polymers, 2015, 15, 285-286.                                                                                                                                                                      | 1.3 | 2         |
| 106 | Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition. Journal of Vacuum<br>Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .                                                                                     | 0.9 | 2         |
| 107 | A Novel Oxide Characterization Method of Nickel Base Alloy 600 Used in Nuclear Plant Reactors. , 2013, , 3355-3361.                                                                                                                                    |     | 2         |
| 108 | Tribological and nanomechanical properties of a lignin-based biopolymer. E-Polymers, 2020, 20, 528-541.                                                                                                                                                | 1.3 | 2         |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Differences in the Sliding Wear Track Patterns Between UHMWPE/Steel and UHMWPE/CNx Pairs. , 2012, 1, 329-336.                                                                                    |     | 1         |
| 110 | Order twins in (111)-evaporated thin films of CuAu I. Thin Solid Films, 1990, 191, 275-282.                                                                                                      | 0.8 | 0         |
| 111 | Carbon nitride as a buffer layer for magnetic thin films. Thin Solid Films, 2005, 476, 148-151.                                                                                                  | 0.8 | Ο         |
| 112 | ICMCTF 2013 — Preface. Thin Solid Films, 2013, 549, 1.                                                                                                                                           | 0.8 | 0         |
| 113 | ICMCTF 2014 - Preface. Thin Solid Films, 2014, 572, 1.                                                                                                                                           | 0.8 | Ο         |
| 114 | ICMCTF 2015 — Preface. Thin Solid Films, 2015, 596, 1.                                                                                                                                           | 0.8 | 0         |
| 115 | 2015 Global Conference on Polymer and Composite Materials (PCM2015). IOP Conference Series:<br>Materials Science and Engineering, 2015, 87, 011001.                                              | 0.3 | 0         |
| 116 | ICMCTF 2015 — Preface. Surface and Coatings Technology, 2015, 284, 1.                                                                                                                            | 2.2 | 0         |
| 117 | Advanced Carbon-Based Coatings. , 2016, , .                                                                                                                                                      |     | 0         |
| 118 | ICMCTF 2016 — Preface. Surface and Coatings Technology, 2016, 308, 1.                                                                                                                            | 2.2 | 0         |
| 119 | Nanomechanical and microtribological properties of yttrium thin films for photocathode<br>engineering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 031507. | 0.9 | 0         |
| 120 | Mechanical and Tribological Properties of the Oxide Thin Films Obtained by Sol-Gel Method. , 2018, ,<br>1513-1526.                                                                               |     | 0         |