Asgar Ebadollahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8749058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Essential Oils Extracted from Different Species of the Lamiaceae Plant Family as Prospective Bioagents against Several Detrimental Pests. Molecules, 2020, 25, 1556.	1.7	109
2	A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. Toxin Reviews, 2015, 34, 76-91.	1.5	52
3	Toxicity of Essential Oil of Agastache Foeniculum (Pursh) Kuntze to Oryzaephilus Surinamensis L. and Lasioderma Serricorne F Journal of Plant Protection Research, 2010, 50, 215-219.	1.0	41
4	Fumigant Toxicity of Lavandula Stoechas L. Oil Against Three Insect Pests Attacking Stored Products. Journal of Plant Protection Research, 2010, 50, .	1.0	33
5	Efficacy of Nanoencapsulated Thymus eriocalyx and Thymus kotschyanus Essential Oils by a Mesoporous Material MCM-41 Against Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 2017, 110, 2413-2420.	0.8	30
6	Integrating inert dusts with other technologies in stored products protection. Toxin Reviews, 2021, 40, 404-419.	1.5	30
7	Iranian Plant Essential Oils as Sources of Natural Insecticide Agents. International Journal of Biological Chemistry, 2011, 5, 266-290.	0.3	29
8	Evaluation for heat stress tolerance in durum wheat genotypes using stress tolerance indices. Archives of Agronomy and Soil Science, 2018, 64, 38-45.	1.3	28
9	Chemical constituents and toxicity of Agastache foeniculum (Pursh) kuntze essential oil against two stored-product insect pests. Chilean Journal of Agricultural Research, 2011, 71, 212-217.	0.4	25
10	Separate and Combined Effects of Mentha piperata and Mentha pulegium Essential Oils and a Pathogenic Fungus Lecanicillium muscarium Against Aphis gossypii (Hemiptera: Aphididae). Journal of Economic Entomology, 2017, 110, 1025-1030.	0.8	24
11	Insecticidal Activity of Essential Oils of Five Aromatic Plants Against <i>Callosobruchus maculatus</i> F. (Coleoptera: Bruchidae) Under Laboratory Conditions. Journal of Essential Oil-bearing Plants: JEOP, 2012, 15, 256-262.	0.7	23
12	Evaluation of the Toxicity of Satureja intermedia C. A. Mey Essential Oil to Storage and Greenhouse Insect Pests and a Predator Ladybird. Foods, 2020, 9, 712.	1.9	22
13	Toxicity and deleterious effects of Artemisia annua essential oil extracts on mulberry pyralid (Glyphodes pyloalis). Pesticide Biochemistry and Physiology, 2020, 170, 104702.	1.6	17
14	Mulberry Protection through Flowering-Stage Essential Oil of Artemisia annua against the Lesser Mulberry Pyralid, Glyphodes pyloalis Walker. Foods, 2021, 10, 210.	1.9	15
15	Toxicity and phytochemical profile of essential oil from Iranian <i>Achillea mellifolium</i> L. against <i>Tetranychus urticae</i> Koch (Acari: Tetranychidae). Toxin Reviews, 2016, 35, 24-28.	1.5	14
16	Effect of different legume seeds on life table parameters of cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). Journal of Stored Products Research, 2021, 90, 101755.	1.2	14
17	Chemical Composition of Essential Oil from <i>Zhumeria majdae</i> Rech. F. & Wendelbo and its Bioactivities Against <i>Tribolium castaneum</i> Herbst (Tenebrionidae) Larvae. Journal of Essential Oil-bearing Plants: JEOP, 2014, 17, 824-831.	0.7	13
18	Phytochemistry, toxicity and feeding inhibitory activity ofMelissa officinalisL. essential oil against a cosmopolitan insect pest:Tribolium castaneumHerbst. Toxin Reviews. 2016, 35, 77-82.	1.5	13

#	Article	IF	CITATIONS
19	Chemical Composition and Acaricidal Effects of Essential Oils of <i>Foeniculum vulgare</i> Mill. (Apiales: Apiaceae) and <i>Lavandula angustifolia</i> Miller (Lamiales: Lamiaceae) against <i>Tetranychus urticae</i> Koch (Acari: Tetranychidae). Psyche: Journal of Entomology, 2014, 2014, 1-6.	0.4	11
20	Acaricidal Potentials of the Terpene-rich Essential Oils of Two Iranian <i>Eucalyptus</i> Species against <i>Tetranychus urticae</i> Koch. Journal of Oleo Science, 2017, 66, 307-314.	0.6	11
21	Modeling and optimization of the insecticidal effects of Teucrium polium L. essential oil against red flour beetle (Tribolium castaneum Herbst) using response surface methodology. Information Processing in Agriculture, 2020, 7, 286-293.	2.9	11
22	Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.). Insects, 2022, 13, 517.	1.0	11
23	Chemical Composition of the Essential Oil of <i>Eucalyptus procera</i> Dehnh. and Its Insecticidal Effects Against Two Stored Product Insects. Journal of Essential Oil-bearing Plants: JEOP, 2016, 19, 1234-1242.	0.7	10
24	Encapsulation of Eucalyptus largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Molecules, 2022, 27, 3531.	1.7	10
25	Susceptibility of Tribolium castaneum (Coleoptera: Tenebrionidae) to the Fumigation of Two Essential Satureja Oils: Optimization and Modeling. Processes, 2021, 9, 1243.	1.3	9
26	Physicochemical traits of Vicia faba L. seed cultivars affect oviposition preference and demographic parameters of Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). Journal of Stored Products Research, 2022, 95, 101924.	1.2	9
27	The effect of diflubenzuron and hexaflumuron on the last larval instars of the Mediterranean Flour Moth <i>Anagasta kuehniella</i> (Zeller) (Lepidoptera: Pyralidae) under laboratory conditions. Archives of Phytopathology and Plant Protection, 2014, 47, 75-81.	0.6	8
28	Chemical composition, acaricidal and insecticidal effects of essential oil from <i>Achillea filipendulina</i> against two arthropod pests; <i>Oryzaephilus surinamensis</i> and <i>Tetranychus urticae</i> . Toxin Reviews, 2017, 36, 132-137.	1.5	8
29	Growth performance and digestive enzymes activity of Rhyzopertha dominica (F.) (Coleoptera:) Tj ETQq1 1 0.784	4314 rgBT 1.2	/Qverlock 10
30	Tritrophic Interactions of Cucumber Cultivar, Aphis gossypii (Hemiptera: Aphididae), and Its Predator Hippodamia variegata (Coleoptera: Coccinellidae). Journal of Economic Entomology, 2019, 112, 1774-1779.	0.8	8
31	Chemical Profiles and Insecticidal Potential of Essential Oils Isolated from Four Thymus Species against Rhyzopertha dominica (F.). Plants, 2022, 11, 1567.	1.6	8
32	Toxicity and biochemical effects of emamectin benzoate against <i>Tuta absoluta</i> (Meyrick) alone and in combination with some conventional insecticides. Physiological Entomology, 2021, 46, 210-217.	0.6	7
33	Acaricidal, Insecticidal, and Nematicidal Efficiency of Essential Oils Isolated from the Satureja Genus. International Journal of Environmental Research and Public Health, 2021, 18, 6050.	1.2	7
34	Antifungal activity of TiO ₂ /AgBr nanocomposites on some phytopathogenic fungi. Food Science and Nutrition, 2021, 9, 3815-3823.	1.5	7
35	Biological Activities of Hypericum perforatum L. Essential Oil Against Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Entomology, 2016, 13, 91-97.	0.2	7
36	Chemical composition and bio-pesticidal values of essential oil isolated from the seed of Heracleum persicum Desf. ex Fischer (Apiaceae). Spanish Journal of Agricultural Research, 2014, 12, 1166.	0.3	7

#	Article	lF	CITATIONS
37	Evaluation of the Potential of a Lectin Extracted from Polygonumpersicaria L. as a Biorational Agent against Sitophilusoryzae L Molecules, 2022, 27, 793.	1.7	7
38	Fumigant Toxicity and Repellent Effect of Seed Essential Oil of Celery Against Lesser Grain Borer, <i>Rhyzopertha dominica</i> F Journal of Essential Oil-bearing Plants: JEOP, 2018, 21, 146-154.	0.7	6
39	Estragole-rich essential oil of summer savory (Satureja hortensis L.) as an eco-friendly alternative to the synthetic insecticides in management of two stored-products insect pests. Acta Agriculturae Slovenica, 2020, 115, 307.	0.2	6
40	Repellency of Ferulago angulata (Schlecht.) Boiss essential oil on two major stored-product insect pests without effect on wheat germination. International Journal of Tropical Insect Science, 2021, 41, 217-223.	0.4	6
41	Analysis of the Essential Oils of Eucalyptus camaldulensis Dehnh. and E. viminalis Labill. as a Contribution to Fortify Their Insecticidal Application. Natural Product Communications, 2020, 15, 1934578X2094624.	0.2	5
42	EVALUATION OF THE INSECTICIDAL ACTIVITIES OF THREE EUCALYPTUS SPECIES CULTIVATED IN IRAN, AGAINST HYPHANTRIA CUNEA DRURY (LEPIDOPTERA: ARCTIIDAE). Journal of Plant Protection Research, 2013, 53, 347-352.	1.0	4
43	Chemical Composition and Toxicity of the Essential Oil of <i>Coriandrum sativum</i> L. and <i>Petroselinum crispum</i> L. Against Three Stored-Product Insect Pests. Journal of Essential Oil-bearing Plants: JEOP, 2016, 19, 1993-2002.	0.7	4
44	Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. Toxin Reviews, 2020, , 1-9.	1.5	4
45	Lethal and sublethal toxicity of some plant-derived essential oils in ectoparasitoid wasp, Habrobracon hebetor Say (Hymenoptera: Braconidae). International Journal of Tropical Insect Science, 2021, 41, 601-610.	0.4	4
46	Evaluation of the Susceptibility of Some Eggplant Cultivars to Green Peach Aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Agriculture (Switzerland), 2021, 11, 31.	1.4	4
47	Antifungal Activities of Pure and ZnO-Encapsulated Essential Oil of Zataria multiflora on Alternaria solani as the Pathogenic Agent of Tomato Early Blight Disease. Frontiers in Plant Science, 0, 13, .	1.7	4
48	CHEMICAL COMPOSITION AND TOXICITY OF THE ESSENTIAL OILS OF LIPPIA CITRIODORA FROM TWO DIFFERENT LOCATIONS AGAINST RHYZOPERTHA DOMINICA AND TRIBOLIUM CASTANEUM. Agriculture and Forestry, 2019, 65, .	0.0	3
49	Diatomaceous Earth and Kaolin as Promising Alternatives to the Detrimental Chemicals in the Management of Spodoptera exigua. Journal of Entomology, 2018, 15, 101-105.	0.2	3
50	‎‎Lethality and effects on biological and population growth parameters of ladybird predator <i>Hippodamia variegata</i> (Goeze) treated by some plant essential oils. Toxin Reviews, 2023, 42, 61-68.	1.5	3
51	Ocimum basilicumL. essential oil cultivated in Iran: chemical composition and antifungal activity against threePhytophthoraspecies. Archives of Phytopathology and Plant Protection, 2014, 47, 1696-1703.	0.6	2
52	High-Pressure Carbon Dioxide Use to Control Dried Apricot Pests, Tribolium castaneum and Rhyzopertha dominica, and Assessing the Qualitative Traits of Dried Pieces of Treated Apricot. Foods, 2021, 10, 1190.	1.9	2
53	Ovicidal and Physiological Effects of Essential Oils Extracted from Six Medicinal Plants on the Elm Leaf Beetle, Xanthogaleruca luteola (Mull.). Agronomy, 2021, 11, 2015.	1.3	2
54	Impacts of two conventional insecticides on different stages ofEncarsia inaronWalker parasitizing the whitefly,Trialeurodes vaporariorumWestwood under greenhouse condition. Archives of Phytopathology and Plant Protection, 2012, 45, 268-275.	0.6	1

ASGAR EBADOLLAHI

#	Article	IF	CITATIONS
55	Repellency of Palizin®(Coconut Soap) with three laboratory techniques against five stored-product insect pests. Archives of Phytopathology and Plant Protection, 2014, 47, 1686-1695.	0.6	1
56	Colorado Potato Beetle (<i>Leptinotarsa decemlineata</i> Say) Control Potential of Essential Oil Isolated from Iranian <i>Cymbopogon citratus</i> Stapf. Natural Product Sciences, 2017, 23, 235.	0.2	1
57	Impact of wheat flour varieties on the life history and demographic parameters of red flour beetle, Tribolium castaneum Herbst. International Journal of Pest Management, 2019, 65, 293-300.	0.9	1
58	THE ESSENTIAL OIL EXTRACTED FROM Thymus kotschyanus BOISS. & HOHEN AS A NATURAL SUBSTANCE FOR MANAGEMENT OF THE LESSER GRAIN BORER, Rhyzopertha dominica F Agriculture and Forestry, 2018, 64, .	0.0	1
59	Hemocytic cell line from the moth Glyphodes pyloalis (Lepidoptera: Crambidae) response to essential oils from Artemisia annua (Asterales: Asteraceae). In Vitro Cellular and Developmental Biology - Animal, 2022, 58, 14-20.	0.7	1
60	Optimization of the antifungal activity of essential oil isolated from aerial parts of <i>Thymus kotschyanus</i> Boiss & Hohen (Lamiaceae). Journal of Applied Sciences and Environmental Management, 2018, 22, 907.	0.1	0
61	Fumigant toxicity of essential oils from three lamiaceous plants and methyl iodide against Phthorimaea operculella (zeller) (Lep.: Gelechiidae). International Journal of Tropical Insect Science, 0, , 1.	0.4	0
62	Comparison of the toxicity and repellency of two conventional neonicotinoids and a coconut-derived insecticide soap toward the parasitoid wasp Aphelinus mali Haldeman, 1851. Acta Agriculturae Slovenica, 2020, 115, 97.	0.2	0
63	Toxicity and Enzymatic-Changes Efficiency of Pistachio Peel and Basil Essential Oils against Plodia interpunctella (Hűbner) Larvae. Entomological News, 2021, 130, .	0.1	0