Amelia Torcello-GÃ³mez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8749043/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the particle size of encapsulated chia oil on the oil release and bioaccessibility during <i>in vitro</i> gastrointestinal digestion. Food and Function, 2022, 13, 1370-1379.	2.1	6
2	Human gastrointestinal conditions affect <i>in vitro</i> digestibility of peanut and bread proteins. Food and Function, 2020, 11, 6921-6932.	2.1	13
3	Simulating human digestion: developing our knowledge to create healthier and more sustainable foods. Food and Function, 2020, 11, 9397-9431.	2.1	94
4	The antibiotic vancomycin induces complexation and aggregation of gastrointestinal and submaxillary mucins. Scientific Reports, 2020, 10, 960.	1.6	23
5	Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. Food Chemistry, 2020, 319, 126514.	4.2	48
6	The pattern of peptides released from dairy and egg proteins is highly dependent on the simulated digestion scenario. Food and Function, 2020, 11, 5240-5256.	2.1	21
7	Chloroplast-rich material from the physical fractionation of pea vine (Pisum sativum) postharvest field residue (Haulm). Food Chemistry, 2019, 272, 18-25.	4.2	8
8	Bile salts in digestion and transport of lipids. Advances in Colloid and Interface Science, 2019, 274, 102045.	7.0	105
9	Report on EFSA project OC/EFSA/GMO/2017/01 "In vitro protein digestibility―(Allergestion). EFSA Supporting Publications, 2019, 16, 1765E.	0.3	10
10	Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion. Langmuir, 2018, 34, 7536-7544.	1.6	23
11	Instant polysaccharide-based emulsions: impact of microstructure on lipolysis. Food and Function, 2017, 8, 2231-2242.	2.1	8
12	Influence of interfacial and bulk properties of cellulose ethers on lipolysis of oil-in-water emulsions. Carbohydrate Polymers, 2016, 144, 495-503.	5.1	38
13	Subphase exchange experiments with the pendant drop technique. Advances in Colloid and Interface Science, 2015, 222, 488-501.	7.0	31
14	Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts. Food and Function, 2015, 6, 730-739.	2.1	42
15	Interactions between cellulose ethers and a bile salt in the control of lipid digestion of lipid-based systems. Carbohydrate Polymers, 2014, 113, 53-61.	5.1	54
16	Block copolymers at interfaces: Interactions with physiological media. Advances in Colloid and Interface Science, 2014, 206, 414-427.	7.0	59
17	Pluronic-covered oil–water interfaces under simulated duodenal conditions. Food Hydrocolloids, 2014, 34, 54-61	5.6	21
18	In vitro digestion of interfacial protein structures. Soft Matter, 2013, 9, 1043-1053.	1.2	58

Amelia Torcello-GÃ³mez

#	Article	IF	CITATIONS
19	Interactions between Pluronics (F127 and F68) and Bile Salts (NaTDC) in the Aqueous Phase and the Interface of Oil-in-Water Emulsions. Langmuir, 2013, 29, 2520-2529.	1.6	56
20	Effect of emulsifier type against the action of bile salts at oil–water interfaces. Food Research International, 2012, 48, 140-147.	2.9	26
21	Adsorption of antibody onto Pluronic F68-covered nanoparticles: link with surface properties. Soft Matter, 2011, 7, 8450.	1.2	34
22	Physicochemical properties and digestibility of emulsified lipids in simulated intestinal fluids: influence of interfacial characteristics. Soft Matter, 2011, 7, 6167.	1.2	91
23	Surface rheology of sorbitan tristearate and β-lactoglobulin: Shear and dilatational behavior. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 713-722.	1.0	32
24	Bulk and interfacial viscoelasticity in concentrated emulsions: The role of the surfactant. Food Hydrocolloids, 2011, 25, 677-686.	5.6	25
25	Investigating the effect of surfactants on lipase interfacial behaviour in the presence of bile salts. Food Hydrocolloids, 2011, 25, 809-816.	5.6	57
26	Different stability regimes of oil-in-water emulsions in the presence of bile salts. Food Research International, 2010, 43, 1634-1641.	2.9	29
27	Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids, 2009, 23, 1096-1102.	5.6	145