Karla J F Satchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8748395/publications.pdf

Version: 2024-02-01

81	2,909	159358	189595
papers	citations	h-index	g-index
101	101	101	3633
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bacterial Toxin and Effector Regulation of Intestinal Immune Signaling. Frontiers in Cell and Developmental Biology, 2022, 10, 837691.	1.8	1
2	Assessment of Virological Contributions to COVID-19 Outcomes in a Longitudinal Cohort of Hospitalized Adults. Open Forum Infectious Diseases, 2022, 9, ofac027.	0.4	8
3	Actin Cross-Linking Effector Domain of the <i>Vibrio vulnificus</i> F-Type MARTX Toxin Dominates Disease Progression During Intestinal Infection. Infection and Immunity, 2022, , e0062721.	1.0	1
4	"From Protein Toxins to Applied Toxicological Testing―virtual workshop identifies the need for a bioinformatic framework to assess novel food protein safety. Regulatory Toxicology and Pharmacology, 2022, 131, 105146.	1.3	5
5	A Genomic Island of Vibrio cholerae Encodes a Three-Component Cytotoxin with Monomer and Protomer Forms Structurally Similar to Alpha-Pore-Forming Toxins. Journal of Bacteriology, 2022, 204, e0055521.	1.0	3
6	Proteolytic pan-RAS Cleavage Leads to Tumor Regression in Patient-derived Pancreatic Cancer Xenografts. Molecular Cancer Therapeutics, 2022, 21, 810-820.	1.9	2
7	The MCF Toxin of the Extracellular Pathogen <i>Vibrio vulnificus</i> is Activated by and Targets Host GTPases. FASEB Journal, 2022, 36, .	0.2	0
8	Structural studies reveal unique features of nsp16 from SARSâ€CoVâ€2, a protein essential for immune system evasion and a possible drug target. FASEB Journal, 2022, 36, .	0.2	0
9	Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity. Science, 2021, 371, 803-810.	6.0	46
10	The ChiS-Family DNA-Binding Domain Contains a Cryptic Helix-Turn-Helix Variant. MBio, 2021, 12, .	1.8	3
11	Sensor Domain of Histidine Kinase VxrA of Vibrio cholerae: Hairpin-Swapped Dimer and Its Conformational Change. Journal of Bacteriology, 2021, 203, .	1.0	4
12	$2\hat{a}\in^2$ -O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
13	Mn ²⁺ coordinates Cap-0-RNA to align substrates for efficient 2′- <i>O</i> -methyl transfer by SARS-CoV-2 nsp16. Science Signaling, 2021, 14, .	1.6	17
14	Probing the SAM Binding Site of SARS-CoV-2 Nsp14 In Vitro Using SAM Competitive Inhibitors Guides Developing Selective Bisubstrate Inhibitors. SLAS Discovery, 2021, 26, 1200-1211.	1.4	55
15	RAS specific protease induces irreversible growth arrest via p27 in several KRAS mutant colorectal cancer cell lines. Scientific Reports, 2021, 11, 17925.	1.6	6
16	1237. Characterization and crystallization of OXA-935, a novel class D OXA-10-like beta-lactamase, found in <i>Pseudomonas aeruginosa</i>). Open Forum Infectious Diseases, 2021, 8, S708-S708.	0.4	0
17	Nâ€terminal autoprocessing and acetylation of multifunctionalâ€autoprocessing repeatsâ€inâ€toxins (MARTX) Makes Caterpillars Floppyâ€like effector is stimulated by adenosine diphosphate (ADP)â€Ribosylation Factor 1 in advance of Golgi fragmentation. Cellular Microbiology, 2020, 22, e13133.	1.1	9
18	Structure of galactarate dehydratase, a new fold in an enolase involved in bacterial fitness after antibiotic treatment. Protein Science, 2020, 29, 711-722.	3.1	4

#	Article	IF	CITATIONS
19	Direct Cloning Method for Expression of Recombinant Proteins with an Inositol Hexakisphosphate Inducible Self-Cleaving Tag. Methods in Molecular Biology, 2020, 2091, 163-179.	0.4	0
20	High-resolution structures of the SARS-CoV-2 $2\hat{a}\in^{2}$ - <i>O</i> -methyltransferase reveal strategies for structure-based inhibitor design. Science Signaling, 2020, 13, .	1.6	143
21	Cross-Kingdom Activation of <i>Vibrio</i> Toxins by ADP-Ribosylation Factor Family GTPases. Journal of Bacteriology, 2020, 202, .	1.0	3
22	Anthrax Protective Antigen Retargeted with Singleâ€Chain Variable Fragments Delivers Enzymes to Pancreatic Cancer Cells. ChemBioChem, 2020, 21, 2772-2776.	1.3	14
23	Cellular microbiology: Bacterial toxin interference drives understanding of eukaryotic cell function. Cellular Microbiology, 2020, 22, e13178.	1.1	3
24	A comparative genomics approach identifies contact-dependent growth inhibition as a virulence determinant. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6811-6821.	3.3	39
25	An engineered chimeric toxin that cleaves activated mutant and wild-type RAS inhibits tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16938-16948.	3.3	26
26	The <i>Vibrio cholerae</i> MARTX toxin silences the inflammatory response to cytoskeletal damage before inducing actin cytoskeleton collapse. Science Signaling, 2020, 13, .	1.6	25
27	Comparison of metalâ€bound and unbound structures of aminopeptidase B proteins from <scp><i>Escherichia coli</i></scp> and <scp><i>Yersinia pestis</i></scp> . Protein Science, 2020, 29, 1618-1628.	3.1	3
28	Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy?. Clinical Science, 2020, 134, 543-545.	1.8	369
29	Delivering a RAS protease halts tumor growth. Oncotarget, 2020, 11, 3265-3266.	0.8	0
30	Lysine 68 acetylation directs MnSOD as a tetrameric detoxification complex versus a monomeric tumor promoter. Nature Communications, 2019, 10, 2399.	5.8	33
31	The Cyclic AMP Receptor Protein Regulates Quorum Sensing and Global Gene Expression in Yersinia pestis during Planktonic Growth and Growth in Biofilms. MBio, 2019, 10, .	1.8	24
32	RRSP and RID Effector Domains Dominate the Virulence Impact of <i>Vibrio vulnificus </i> NARTX Toxin. Journal of Infectious Diseases, 2019, 219, 889-897.	1.9	15
33	Structural comparison of <i>p</i> -hydroxybenzoate hydroxylase (PobA) from <i>Pseudomonas putida</i> with PobA from other <i>Pseudomonas</i> spp. and other monooxygenases. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 507-514.	0.4	3
34	Draft Genome Sequences of Two Vibrio parahaemolyticus Strains Associated with Gastroenteritis after Raw Seafood Ingestion in Colorado. Genome Announcements, 2018, 6, .	0.8	3
35	Coordinated delivery and function of bacterial MARTX toxin effectors. Molecular Microbiology, 2018, 107, 133-141.	1.2	20
36	The bacterial Ras/Rap1 site-specific endopeptidase RRSP cleaves Ras through an atypical mechanism to disrupt Ras-ERK signaling. Science Signaling, $2018, 11, .$	1.6	39

#	Article	IF	CITATIONS
37	Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. Journal of Cell Biology, 2018, 217, 3219-3235.	2.3	41
38	Engineered Bacteria for Cholera Prophylaxis. Cell Host and Microbe, 2018, 24, 192-194.	5.1	4
39	Vibrio2017: the Seventh International Conference on the Biology of Vibrios. Journal of Bacteriology, 2018, 200, e00304-18.	1.0	6
40	Substrate Recognition of MARTX Ras/Rap1-Specific Endopeptidase. Biochemistry, 2017, 56, 2747-2757.	1.2	22
41	Efficacy of Ceftriaxone, Cefepime, Doxycycline, Ciprofloxacin, and Combination Therapy for Vibrio vulnificus Foodborne Septicemia. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	23
42	Variable Virulence of Biotype 3 Vibrio vulnificus due to MARTX Toxin Effector Domain Composition. MSphere, 2017, 2, .	1.3	15
43	Surface hypothermia predicts murine mortality in the intragastric Vibrio vulnificus infection model. BMC Microbiology, 2017, 17, 136.	1.3	19
44	The Effector Domain Region of the Vibrio vulnificus MARTX Toxin Confers Biphasic Epithelial Barrier Disruption and Is Essential for Systemic Spread from the Intestine. PLoS Pathogens, 2017, 13, e1006119.	2.1	36
45	New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag. BMC Biotechnology, 2017, 17, 1.	1.7	42
46	Vibrio vulnificus: From Oyster Colonist to Human Pathogen. PLoS Pathogens, 2017, 13, e1006053.	2.1	44
47	In Vitro Synergism Against Vibrio vulnificus With the Addition of Doxycycline or Ciprofloxacin to Cefepime. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
48	MARTX effector cross kingdom activation by Golgi-associated ADP-ribosylation factors. Cellular Microbiology, 2016, 18, 1078-1093.	1.1	16
49	Phenotypic Analysis Reveals that the 2010 Haiti Cholera Epidemic Is Linked to a Hypervirulent Strain. Infection and Immunity, 2016, 84, 2473-2481.	1.0	48
50	Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of <i>Vibrios</i> Spectrum, 2015, 3, .	1.2	100
51	Induced autoprocessing of the cytopathic Makes caterpillars floppy-like effector domain of the <i>V</i> i>ibrio vulnificusâ€MARTX toxin. Cellular Microbiology, 2015, 17, 1494-1509.	1.1	22
52	Draft Genome Sequences of Four Closely Linked Vibrio vulnificus Isolates from the Biotype 1 Environmental Genotype. Genome Announcements, $2015, 3, \ldots$	0.8	1
53	Mechanisms of Inflammasome Activation by Vibrio cholerae Secreted Toxins Vary with Strain Biotype. Infection and Immunity, 2015, 83, 2496-2506.	1.0	15
54	Autophagy and endosomal trafficking inhibition by Vibrio cholerae MARTX toxin phosphatidylinositol-3-phosphate-specific phospholipase A1 activity. Nature Communications, 2015, 6, 8745.	5.8	40

#	Article	IF	CITATIONS
55	MARTX toxins as effector delivery platforms. Pathogens and Disease, 2015, 73, ftv092.	0.8	37
56	Site-specific processing of Ras and Rap1 Switch I by a MARTX toxin effector domain. Nature Communications, 2015, 6, 7396.	5.8	64
57	The Makes Caterpillars Floppy (MCF)-Like Domain of Vibrio vulnificus Induces Mitochondrion-Mediated Apoptosis. Infection and Immunity, 2015, 83, 4392-4403.	1.0	17
58	Distinct Roles of the Repeat-Containing Regions and Effector Domains of the Vibrio vulnificus Multifunctional-Autoprocessing Repeats-in-Toxin (MARTX) Toxin. MBio, 2015, 6, .	1.8	48
59	<scp><i>V</i></scp> <i>i>V</i> <ii>ibrio choleraeMARTX toxin heterologous translocation of betaâ€lactamase and roles of individual effector domains on cytoskeleton dynamics. Molecular Microbiology, 2015, 95, 590-604.</ii>	1.2	44
60	A bacterial toxin that cleaves Ras oncoprotein. Oncotarget, 2015, 6, 18742-18743.	0.8	4
61	Cytotoxicity of the <i>V ii>ibrio vulnificus</i> MARTX toxin Effector DUF5 is linked to the C2A Subdomain. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2643-2656.	1.5	37
62	Vibrio vulnificus Biotype 3 Multifunctional Autoprocessing RTX Toxin Is an Adenylate Cyclase Toxin Essential for Virulence in Mice. Infection and Immunity, 2014, 82, 2148-2157.	1.0	51
63	Backbone and side-chain assignments of an effector membrane localization domain from Vibrio vulnificus MARTX toxin. Biomolecular NMR Assignments, 2014, 8, 225-228.	0.4	4
64	Backbone and side-chain resonance assignments of the membrane localization domain from Pasteurella multocida toxin. Biomolecular NMR Assignments, 2014, 8, 221-224.	0.4	4
65	Draft Genome Sequence of Israeli Outbreak-Associated Vibrio vulnificus Biotype 3 Clinical Isolate BAA87. Genome Announcements, 2014, 2, .	0.8	5
66	Analysis of Vibrio cholerae Genome Sequences Reveals Unique <i>rtxA</i> Variants in Environmental Strains and an <i>rtxA</i> -Null Mutation in Recent Altered El Tor Isolates. MBio, 2013, 4, e00624.	1.8	43
67	Identification of a His-Asp-Cys Catalytic Triad Essential for Function of the Rho Inactivation Domain (RID) of Vibrio cholerae MARTX Toxin. Journal of Biological Chemistry, 2013, 288, 1397-1408.	1.6	31
68	Large Scale Structural Rearrangement of a Serine Hydrolase from Francisella tularensis Facilitates Catalysis. Journal of Biological Chemistry, 2013, 288, 10522-10535.	1.6	28
69	Promotion of Colonization and Virulence by Cholera Toxin Is Dependent on Neutrophils. Infection and Immunity, 2013, 81, 3338-3345.	1.0	13
70	Additive Function of Vibrio vulnificus MARTXVv and VvhA Cytolysins Promotes Rapid Growth and Epithelial Tissue Necrosis During Intestinal Infection. PLoS Pathogens, 2012, 8, e1002581.	2.1	121
71	Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif. Cellular Microbiology, 2012, 14, 286-298.	1.1	43
72	Structure and Function of MARTX Toxins and Other Large Repetitive RTX Proteins. Annual Review of Microbiology, 2011, 65, 71-90.	2.9	148

#	Article	IF	CITATIONS
73	<i>Vibrio vulnificus rtxA1</i> gene recombination generates toxin variants with altered potency during intestinal infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1645-1650.	3.3	90
74	Identification of a conserved membrane localization domain within numerous large bacterial protein toxins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5581-5586.	3.3	76
75	Inositol Hexakisphosphate-Induced Autoprocessing of Large Bacterial Protein Toxins. PLoS Pathogens, 2010, 6, e1000942.	2.1	68
76	Actin Crosslinking Toxins of Gram-Negative Bacteria. Toxins, 2009, 1, 123-133.	1.5	22
77	Successful Small Intestine Colonization of Adult Mice by Vibrio cholerae Requires Ketamine Anesthesia and Accessory Toxins. PLoS ONE, 2009, 4, e7352.	1.1	74
78	The <i>Vibrio cholerae</i> Flagellar Regulatory Hierarchy Controls Expression of Virulence Factors. Journal of Bacteriology, 2009, 191, 6555-6570.	1.0	186
79	Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites. Journal of Biological Chemistry, 2009, 284, 26557-26568.	1.6	75
80	Genetic determination of essential residues of the ⟨i⟩Vibrio cholerae⟨ i⟩ actin crossâ€linking domain reveals functional similarity with glutamine synthetases. Molecular Microbiology, 2009, 73, 858-868.	1.2	23
81	Bacterial Martyrdom: Phagocytes Disabled by Type VI Secretion after Engulfing Bacteria. Cell Host and Microbe, 2009, 5, 213-214.	5.1	8