
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8748263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromatin remodelling and retrotransposons activities during regeneration in Drosophila. Developmental Biology, 2022, 482, 7-16.	2.0	3
2	An exciting period of Drosophila developmental biology: Of imaginal discs, clones, compartments, parasegments and homeotic genes. Developmental Biology, 2022, 484, 12-21.	2.0	15
3	Cell competition: A historical perspective. Developmental Biology, 2021, 476, 33-40.	2.0	35
4	Tumorigenesis and cell competition in <i>Drosophila</i> in the absence of <i>polyhomeotic</i> function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
5	Cell competition and tumorigenesis in the imaginal discs of Drosophila. Seminars in Cancer Biology, 2020, 63, 19-26.	9.6	27
6	A refutation to â€~A new A-P compartment boundary and organizer in holometabolous insect wings'. Scientific Reports, 2019, 9, 7049.	3.3	3
7	Pro-apoptotic and pro-proliferation functions of the JNK pathway of <i>Drosophila</i> : roles in cell competition, tumorigenesis and regeneration. Open Biology, 2019, 9, 180256.	3.6	65
8	JNK-mediated Slit-Robo signaling facilitates epithelial wound repair by extruding dying cells. Scientific Reports, 2019, 9, 19549.	3.3	10
9	Short-term activation of the Jun N-terminal kinase pathway in apoptosis-deficient cells of Drosophila induces tumorigenesis. Nature Communications, 2018, 9, 1541.	12.8	40
10	Regenerative response of different regions of Drosophila imaginal discs. International Journal of Developmental Biology, 2018, 62, 507-512.	0.6	3
11	Homeostatic response to blocking cell division in Drosophila imaginal discs: Role of the Fat/Dachsous (Ft/Ds) pathway. Developmental Biology, 2017, 424, 113-123.	2.0	3
12	Distinct regenerative potential of trunk and appendages of Drosophila mediated by JNK signalling. Development (Cambridge), 2017, 144, 3946-3956.	2.5	14
13	Tumorigenic Properties of <i>Drosophila</i> Epithelial Cells Mutant for <i>lethal giant larvae</i> . Developmental Dynamics, 2016, 245, 834-843.	1.8	21
14	Cell reprogramming during regeneration in Drosophila : transgression of compartment boundaries. Current Opinion in Genetics and Development, 2016, 40, 11-16.	3.3	6
15	Cell competition, apoptosis and tumour development. International Journal of Developmental Biology, 2015, 59, 79-86.	0.6	25
16	Death to the losers. Science, 2014, 346, 1181-1182.	12.6	11
17	Tethered wings. Nature, 2014, 505, 162-163.	27.8	12
18	Transgressions of compartment boundaries and cell reprogramming during regeneration in Drosophila. ELife, 2014, 3, e01831.	6.0	39

#	Article	IF	CITATIONS
19	Tissue Homeostasis in the Wing Disc of Drosophila melanogaster: Immediate Response to Massive Damage during Development. PLoS Genetics, 2013, 9, e1003446.	3.5	96
20	Eiger triggers death from afar. ELife, 2013, 2, e01388.	6.0	2
21	Mitogenic signaling from apoptotic cells in Drosophila. Development Growth and Differentiation, 2011, 53, 168-176.	1.5	72
22	A tumor-suppressing mechanism in <i>Drosophila</i> involving cell competition and the Hippo pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14651-14656.	7.1	164
23	Differential division rates and size control in the wing disc. Fly, 2010, 4, 226-229.	1.7	2
24	Apoptosis in Drosophila: compensatory proliferation and undead cells. International Journal of Developmental Biology, 2009, 53, 1341-1347.	0.6	126
25	The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the <i>Drosophila</i> wing disc. Development (Cambridge), 2009, 136, 1169-1177.	2.5	175
26	Cell competition, growth and size control in the <i>Drosophila</i> wing imaginal disc. Development (Cambridge), 2009, 136, 3747-3756.	2.5	129
27	Spalt major controls the development of the notum and of wing hinge primordia of the Drosophila melanogaster wing imaginal disc. Developmental Biology, 2009, 329, 315-326.	2.0	20
28	Cell Competition: The Embrace of Death. Developmental Cell, 2007, 13, 1-2.	7.0	23
29	Ginés Morata. Current Biology, 2006, 16, R976-R977.	3.9	0
30	Compartments and the control of growth in the Drosophila wing imaginal disc. Development (Cambridge), 2006, 133, 4421-4426.	2.5	61
31	calderoln encodes an organic cation transporter of the major facilitator superfamily required for cell growth and proliferation of Drosophila tissues. Development (Cambridge), 2006, 133, 2617-2625.	2.5	13
32	Dpp signaling and the induction of neoplastic tumors by caspase-inhibited apoptotic cells in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17664-17669.	7.1	64
33	Patterning function of homothorax/extradenticle in the thorax of Drosophila. Development (Cambridge), 2005, 132, 439-446.	2.5	25
34	The brinker gradient controls wing growth in Drosophila. Development (Cambridge), 2004, 131, 4921-4930.	2.5	90
35	Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development (Cambridge), 2004, 131, 5591-5598.	2.5	290
36	PVF1/PVR signaling and apoptosis promotes the rotation and dorsal closure of the Drosophila male terminalia. International Journal of Developmental Biology, 2004, 48, 1087-1094.	0.6	49

#	Article	IF	CITATIONS
37	The role ofbuttonheadandSp1in the development of the ventral imaginal discs ofDrosophila. Development (Cambridge), 2003, 130, 5929-5941.	2.5	68
38	The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development (Cambridge), 2003, 130, 4473-4482.	2.5	81
39	Distinct functions of homothorax in leg development in Drosophila. Mechanisms of Development, 2002, 119, 55-67.	1.7	53
40	How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene, 2002, 292, 1-12.	2.2	75
41	Cells compete for Decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature, 2002, 416, 755-759.	27.8	410
42	How drosophila appendages develop. Nature Reviews Molecular Cell Biology, 2001, 2, 89-97.	37.0	89
43	The Wingless target gene Dfz3 encodes a new member of the Drosophila Frizzled family. Mechanisms of Development, 2000, 91, 427-431.	1.7	40
44	The Developmental and Molecular Biology of Genes that Subdivide the Body ofDrosophila. Annual Review of Cell and Developmental Biology, 2000, 16, 243-271.	9.4	202
45	Cells in search of a signal. Nature Cell Biology, 1999, 1, E60-E61.	10.3	4
46	Caudal is the Hox gene that specifies the most posterior Drosophile segment. Nature, 1999, 400, 873-877.	27.8	125
47	Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature, 1999, 402, 425-429.	27.8	295
48	Pulling the fly's leg. Nature, 1998, 392, 657-658.	27.8	4
49	Antagonism between extradenticle function and Hedgehog signalling in the developing limb. Nature, 1998, 394, 196-200.	27.8	142
50	Colinearity and functional hierarchy among genes of the homeotic complexes. Trends in Genetics, 1994, 10, 358-364.	6.7	405
51	Homeobox genes: Their function in Drosophila segmentation and pattern formation. Cell, 1994, 78, 181-189.	28.9	289
52	Genetic factors controlling the expression of the abdominal-A gene of Drosophila within its domain. Mechanisms of Development, 1994, 46, 15-25.	1.7	9
53	Homeotic genes of Drosophila. Current Opinion in Genetics and Development, 1993, 3, 606-614.	3.3	52
54	The developmental effect of overexpressing a Ubx product in Drosophila embryos is dependent on its interactions with other homeotic products. Cell, 1990, 61, 515-522.	28.9	179

#	Article	IF	CITATIONS
55	Structure and Function of the Bithorax Complex Genes of <i>Drosophila</i> . Novartis Foundation Symposium, 1989, 144, 227-242.	1.1	3
56	Genetic structure of the bithorax complex. BioEssays, 1988, 8, 124-128.	2.5	6
57	Developmental analysis of a hybrid gene composed of parts of the <i>Ubx</i> and <i>abd-A</i> genes of <i>Drosophila</i> . EMBO Journal, 1988, 7, 1097-1105.	7.8	21
58	Identification and characterization of a parasegment specific regulatory element of the abdominal-B gene of drosophila. Cell, 1986, 47, 627-636.	28.9	151
59	The bithorax complex of Drosophila: an overview. Cell Differentiation, 1986, 18, 67-78.	0.4	14
60	Prothoracic transformation and functional structure of the Ultrabithorax gene of Drosophila. Cell, 1985, 42, 663-669.	28.9	71
61	TheUbx syndrome ofDrosophila: the prothoracic transformation (ppx) is independent ofbx, bxd andpbx. Wilhelm Roux's Archives of Developmental Biology, 1984, 193, 263-265.	1.4	1
62	The elements of the bithorax complex. Cell, 1983, 35, 595-601.	28.9	92
63	The phenotype of engrailed mutations in the antenna of Drosophila. Developmental Biology, 1983, 99, 27-33.	2.0	25
64	The Mode of Action of the Bithorax Genes ofDrosophila melanogaster. American Zoologist, 1982, 22, 57-64.	0.7	5
65	The role of position in determining homoeotic gene function in Drosophila. Nature, 1982, 300, 191-192.	27.8	17
66	Developmental effects of some newly induced Ultrabithorax alleles of Drosophila. Development (Cambridge), 1982, 68, 211-234.	2.5	31
67	Differential mitotic rates and patterns of growth in compartments in the Drosophila wing. Developmental Biology, 1981, 85, 299-308.	2.0	207
68	Sequential functions of the bithorax complex of Drosophila. Nature, 1981, 290, 778-781.	27.8	132
69	An Analysis of the Expressivity of Some Bithorax Transformations. , 1980, 16, 141-154.		17
70	The Control of Growth in the Imaginal Discs of Drosophila. , 1980, 16, 129-139.		7
71	Compartments in Animal Development. Scientific American, 1979, 241, 102-111.	1.0	93
72	Early development of the thoracic discs ofDrosophila. Wilhelm Roux's Archives of Developmental Biology, 1979, 187, 375-379.	1.4	9

IF ARTICLE CITATIONS # Development of the eye-antenna imaginal disc of Drosophila. Developmental Biology, 1979, 70, 355-371. CELL LINEAGE IN INSECT DEVELOPMENT., 1979, , 167-170. 74 0 Anterior and posterior compartments in the head of Drosophila. Nature, 1978, 274, 473-474. The development of wingless, a homeotic mutation of Drosophila. Developmental Biology, 1977, 56, 76 2.0 185 227-240. The early development of mesothoracic compartments in Drosophila. Developmental Biology, 1977, 56, 164 40-51. Homoeotic genes, compartments and cell determination in Drosophila. Nature, 1977, 265, 211-216. 78 27.8 133 Minutes: Mutants of Drosophila autonomously affecting cell division rate. Developmental Biology, 1975, 42, 211-221.

GINéS MORATA