Guyu Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8747746/publications.pdf

Version: 2024-02-01

42 1,602 21 papers citations h-index

42 42 42 1800 all docs docs citations times ranked citing authors

40

g-index

#	Article	IF	CITATIONS
1	Mesoporous Zeolitic Imidazolate Frameworks. CCS Chemistry, 2022, 4, 2906-2913.	4.6	7
2	Hierarchically porous carbons fabricated by dual pore-forming approach for the oxygen reduction reaction. Carbon, 2022, 189, 634-641.	5 . 4	14
3	Hierarchically porous doped carbons fabricated by the strategy of ion transfer coordination (ITC). Journal of Materials Chemistry A, 2022, 10, 9129-9136.	5. 2	8
4	N,S-Codoped Mesoporous Carbons Derived from Polymer Micelle-Based Assemblies for the Oxygen Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 1954-1961.	2.5	15
5	A Strategy of Bifunctional Nanoscale Melamineâ€Resin Sphere Template to Fabricate Porous Carbons. Advanced Materials Interfaces, 2021, 8, 2100244.	1.9	11
6	<i>In silico</i> study of structure and water dynamics in CNT/polyamide nanocomposite reverse osmosis membranes. Physical Chemistry Chemical Physics, 2020, 22, 22324-22331.	1.3	6
7	High performance graphene-based foam fabricated by a facile approach for oil absorption. Journal of Materials Chemistry A, 2017, 5, 11263-11270.	5.2	76
8	Sulfonated poly(arylene thioether phosphine oxide)s (sPTPO) and sPTPO/sulfonated polybenzothiazole blends as proton exchange membranes. RSC Advances, 2016, 6, 21367-21375.	1.7	9
9	Trisulfonation approach: To improve the properties of poly(arylene thioether phosphine oxide)s based proton exchange membranes. Journal of Membrane Science, 2016, 508, 32-39.	4.1	16
10	Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. Journal of Materials Chemistry A, 2015, 3, 7498-7504.	5. 2	160
11	Sulfonated poly(arylene ether phosphine oxide)s with various distributions and contents of pendant sulfonic acid groups synthesized by direct polycondensation. Polymer Chemistry, 2014, 5, 412-422.	1.9	23
12	A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. Journal of Materials Chemistry A, 2014, 2, 3057.	5.2	224
13	High performance sulfonated poly(phthalazinone ether phosphine oxide)s for proton exchange membranes. Journal of Membrane Science, 2013, 447, 43-49.	4.1	23
14	High performance proton exchange membranes obtained by adjusting the distribution and content of sulfonic acid side groups. Chemical Communications, 2013, 49, 3979.	2.2	18
15	Synthesis of superior dispersions of reduced graphene oxide. New Journal of Chemistry, 2013, 37, 2778.	1.4	19
16	Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. Journal of Materials Chemistry A, 2013, 1, 1481-1487.	5. 2	139
17	Novel sulfonated polybenzothiazoles with outstanding dimensional stability for proton exchange membranes. Journal of Membrane Science, 2013, 425-426, 200-207.	4.1	25
18	High performance sulfonated poly(arylene ether phosphine oxide) membranes by self-protected cross-linking for fuel cells. Journal of Materials Chemistry, 2012, 22, 13714.	6.7	41

#	ARTICLE	IF	Citations
19	Soluble sulfonated polybenzothiazoles derived from $3,3\hat{a}\in^2$ -disulfonate- $4,4\hat{a}\in^2$ -dicarboxylbiphenyl for proton exchange membranes. International Journal of Hydrogen Energy, 2012, 37, 5170-5179.	3.8	20
20	Sulfonated poly(arylene ether)s with high content of phosphine oxide moieties for proton exchange membranes. Journal of Membrane Science, 2012, 389, 407-415.	4.1	15
21	Synthesis and properties of soluble sulfonated polybenzimidazoles derived from asymmetric dicarboxylic acid monomers with sulfonate group as proton exchange membrane. Journal of Membrane Science, 2011, 369, 388-396.	4.1	43
22	Sulfonated poly(arylene thioether phosphine oxide)/sulfonated benzimidazole blends for proton exchange membranes. Journal of Membrane Science, 2011, 372, 125-133.	4.1	17
23	Preparation and properties of polybenzimidazoles with sulfophenylsulfonyl pendant groups for proton exchange membranes. Journal of Membrane Science, 2010, 353, 51-59.	4.1	40
24	Synthesis and characterization of sulfonated poly(arylene ether ketone/ketone phosphine oxide)s as proton exchange membranes. Journal of Membrane Science, 2010, 362, 509-516.	4.1	15
25	Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether) Tj ETQq1 35, 2436-2445.	1 0.784314 3.8	rgBT /Overloo 37
26	Synthesis and properties of sulfonated polybenzothiazoles with benzimidazole moieties as proton exchange membranes. Journal of Membrane Science, 2010, 356, 70-77.	4.1	26
27	Sulfonated Poly(arylene ether sulfone)s with Phosphine Oxide Moieties: A Promising Material for Proton Exchange Membranes. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1601-1607.	4.0	52
28	Sulfonated Polybenzothiazoles: A Novel Candidate for Proton Exchange Membranes. Chemistry of Materials, 2010, 22, 1022-1031.	3.2	67
29	Synthesis and characterization of sulfonated poly(arylene ether phosphine oxide)s with fluorenyl groups by direct polymerization for proton exchange membranes. Journal of Membrane Science, 2009, 329, 99-105.	4.1	37
30	Synthesis and hydrolytic stability of soluble sulfonated polybenzoxazoles derived from bis(3-sulfonate-4-carboxyphenyl) sulfone. Polymer Bulletin, 2009, 62, 593-604.	1.7	10
31	Synthesis and properties of soluble sulfonated polybenzimidazoles from $3,38\in^2$ -disulfonate-4,48 \in^2 -dicarboxylbiphenyl as proton exchange membranes. Journal of Membrane Science, 2009, 334, 91-100.	4.1	58
32	Synthesis and properties of sulfonated poly(arylene ether phosphine oxide)s for proton exchange membranes. Journal of Power Sources, 2009, 188, 57-63.	4.0	29
33	Synthesis and characterization of sulfonated poly(phthalazinone ether phosphine oxide)s by direct polycondensation for proton exchange membranes. Journal of Polymer Science Part A, 2008, 46, 1758-1769.	2.5	55
34	Sulfonated poly(arylene thioether phosphine oxide)s copolymers for proton exchange membrane fuel cells. Journal of Membrane Science, 2008, 310, 303-311.	4.1	46
35	Synthesis of soluble sulfonated polybenzimidazoles derived from 2-sulfonate terephthalic acid. E-Polymers, 2008, 8, .	1.3	4

Comparison of the water uptake and swelling between sulfonated poly(phthalazinone ether ketone) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 5 graph (see 10 Tf 5 graph) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 5 graph)

#	Article	IF	CITATIONS
37	Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability. E-Polymers, 2005, 5, .	1.3	5
38	Polyelectrolytes for Fuel Cells Made of Sulfonated Poly(phthalazinone ether ketone)s. Macromolecular Rapid Communications, 2002, 23, 488.	2.0	46
39	Synthesis and characterization of novel sulfonated poly(arylene ether ketone)s derived from 4,4'-sulfonyldiphenol. Polymer Bulletin, 2002, 48, 309-315.	1.7	26
40	Synthesis of poly(aryl ether sulfone)-graft-polystyrene and poly(aryl ether) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 polymerization. Polymer International, 2002, 51, 673-679.	627 Td (s 1.6	ulfone)-graft- 8
41	Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization. Polymer, 2002, 43, 5335-5339.	1.8	73
42	Synthesis of aromatic polyethersulfone-based graft copolyacrylates via ATRP catalyzed by FeCl2/isophthalic acid. Journal of Polymer Science Part A, 2001, 39, 2943-2950.	2.5	31