Mohammad Kheradmand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8747425/publications.pdf

Version: 2024-02-01

19 papers 508 citations

9 h-index

1170033

16 g-index

20 all docs

20 docs citations

times ranked

20

706 citing authors

#	Article	IF	Citations
1	Early Age Temperature Control in Mass Concrete Through Incorporation of Dispersed Phase Change Materials (PCMs). RILEM Bookseries, 2021, , 13-24.	0.2	O
2	Alkali-activated cement-based binder mortars containing phase change materials (PCMs): mechanical properties and cost analysis. European Journal of Environmental and Civil Engineering, 2020, 24, 1068-1090.	1.0	10
3	Boosting Smart Building Energy Saving Capacity using Phase Change Materials. , 2020, , .		O
4	An innovative approach for temperature control of massive concrete structures at early ages based on post-cooling: Proof of concept. Journal of Building Engineering, 2020, 32, 101832.	1.6	5
5	Influence of the incorporation of phase change materials on temperature development in mortar at early ages: Experiments and numerical simulation. Construction and Building Materials, 2019, 225, 1036-1051.	3.2	16
6	Energy benefits of cement-based plaster containing hybrid phase-change material. Proceedings of Institution of Civil Engineers: Construction Materials, 2018, 171, 117-125.	0.7	3
7	Shrinkage Performance of Fly Ash Alkali-activated Cement Based Binder Mortars. KSCE Journal of Civil Engineering, 2018, 22, 1854-1864.	0.9	24
8	Performance of a Fly Ash Geopolymeric Based Binder with Calcium Hydroxide, Portland Cement and Metakaolin as Additives. Open Civil Engineering Journal, 2018, 12, 167-186.	0.4	3
9	Thermal Performance of Resource-Efficient Geopolymeric Mortars Containing Phase Change Materials. Open Construction and Building Technology Journal, 2018, 12, 217-233.	0.3	2
10	Experimental and numerical investigations on the flexural performance of geopolymers reinforced with short hybrid polymeric fibres. Composites Part B: Engineering, 2017, 126, 108-118.	5.9	34
11	Short-Term Compressive Strength of Fly Ash and Waste Glass Alkali-Activated Cement-Based Binder Mortars with Two Biopolymers. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	26
12	Drying shrinkage of fly ash geopolymeric mortars reinforced with polymer hybrid fibres. Proceedings of Institution of Civil Engineers: Construction Materials, 2017, , 1-13.	0.7	3
13	Alkali-Activated Cement-Based Binders (AACBs) as Durable and Cost-Competitive Low-CO2 Binder Materials. , 2017, , 195-216.		20
14	Optimal behavior of responsive residential demand considering hybrid phase change materials. Applied Energy, 2016, 163, 81-92.	5.1	52
15	Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings. Energy, 2016, 94, 250-261.	4.5	121
16	Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems. Construction and Building Materials, 2015, 89, 48-59.	3.2	92
17	Mortars with Phase Change Materials: Contribute to Sustainable Construction. Key Engineering Materials, 2014, 634, 3-13.	0.4	6
18	Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials. Energy and Buildings, 2014, 84, 526-536.	3.1	80

#	Article	IF	CITATIONS
19	Estimation of the specific enthalpy–temperature functions for plastering mortars containing hybrid mixes of phase change materials. International Journal of Energy and Environmental Engineering, 2014, 5, 1.	1.3	9