Aldo Di Carlo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/874727/aldo-di-carlo-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

616 64 109 17,433 h-index g-index citations papers 6.86 5.6 20,145 740 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
616	A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics <i>Nature Communications</i> , 2022 , 13, 89	17.4	14
615	The Golden Fig: A Plasmonic Effect Study of Organic-Based Solar Cells Nanomaterials, 2022, 12,	5.4	2
614	2D materials for organic and perovskite photovoltaics. <i>Nano Energy</i> , 2022 , 94, 106833	17.1	1
613	Synergic use of two-dimensional materials to tailor interfaces in large area perovskite modules. <i>Nano Energy</i> , 2022 , 95, 107019	17.1	2
612	Neutron irradiated perovskite films and solar cells on PET substrates. <i>Nano Energy</i> , 2022 , 93, 106879	17.1	1
611	Reverse-Bias and Temperature Behaviors of Perovskite Solar Cells at Extended Voltage Range <i>ACS Applied Energy Materials</i> , 2022 , 5, 1378-1384	6.1	4
610	Reverse bias breakdown and photocurrent gain in CH3NH3PbBr3 films. <i>Applied Physics Letters</i> , 2022 , 120, 113505	3.4	3
609	Low-Temperature-Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review. <i>Advanced Energy Materials</i> , 2022 , 12, 2103534	21.8	4
608	Zero-Waste Scalable BladeBpin Coating as Universal Approach for Layer-by-Layer Deposition of 3D/2D Perovskite Films in High-Efficiency Perovskite Solar Modules. <i>Solar Rrl</i> , 2022 , 6, 2100637	7.1	2
607	Role of Phase Nanosegregation in the Photoluminescence Spectra of Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 11659-11665	6.4	
606	Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture. <i>ACS Energy Letters</i> , 2021 , 6, 3916-3923	20.1	35
605	Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application. <i>Energies</i> , 2021 , 14, 6393	3.1	8
604	Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules. <i>ACS Applied Energy Materials</i> , 2021 , 4, 98-110	6.1	5
603	Roadmap on organicIhorganic hybrid perovskite semiconductors and devices. <i>APL Materials</i> , 2021 , 9, 109202	5.7	28
602	Optical design of InGaN/GaN nanoLED arrays on a chip: toward: highly resolved illumination. <i>Nanotechnology</i> , 2021 , 32, 105203	3.4	6
601	Systematic approach to the study of the photoluminescence of MAPbI3. <i>Physical Review Materials</i> , 2021 , 5,	3.2	2
600	On the relation between mobile ion kinetics, device design, and doping in double-cation perovskite solar cells. <i>Applied Physics Letters</i> , 2021 , 118, 093501	3.4	1

(2021-2021)

599	Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2021 , 13, 11741-11754	9.5	17	
598	Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions. <i>Energies</i> , 2021 , 14, 1751	3.1	3	
597	Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. <i>Nano Energy</i> , 2021 , 82, 105771	17.1	32	
596	Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 5061-5073	8.3	14	
595	Ambient Air Blade-Coating Fabrication of Stable Triple-Cation Perovskite Solar Modules by Green Solvent Quenching. <i>Solar Rrl</i> , 2021 , 5, 2100073	7.1	10	
594	Laser-Scribing Optimization for Sprayed SnO-Based Perovskite Solar Modules on Flexible Plastic Substrates. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4507-4518	6.1	11	
593	A Novel Approach for a Chip-Sized Scanning Optical Microscope. <i>Micromachines</i> , 2021 , 12,	3.3	1	
592	Low-Temperature Graphene-Based Paste for Large-Area Carbon Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 22368-22380	9.5	14	
591	Modified P3HT materials as hole transport layers for flexible perovskite solar cells. <i>Journal of Power Sources</i> , 2021 , 494, 229735	8.9	10	
590	Pursuing the Diffraction Limit with Nano-LED Scanning Transmission Optical Microscopy. <i>Sensors</i> , 2021 , 21,	3.8	1	
589	Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm Active Area. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 ,	9.5	9	
588	Methylamine Gas Treatment Affords Improving Semitransparency, Efficiency, and Stability of CH3NH3PbBr3-Based Perovskite Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2100277	7.1	5	
587	Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer. <i>Nano Energy</i> , 2021 , 82, 105685	17.1	15	
586	Solution-processed two-dimensional materials for next-generation photovoltaics. <i>Chemical Society Reviews</i> , 2021 , 50, 11870-11965	58.5	21	
585	Laser Processing Optimization for Large-Area Perovskite Solar Modules. <i>Energies</i> , 2021 , 14, 1069	3.1	4	
584	Mixed Cation Halide Perovskite under Environmental and Physical Stress. <i>Materials</i> , 2021 , 14,	3.5	2	
583	Individually Switchable InGaN/GaN Nano-LED Arrays as Highly Resolved Illumination Engines. <i>Electronics (Switzerland)</i> , 2021 , 10, 1829	2.6	2	
582	Single source chemical vapor deposition (ssCVD) for highly luminescent inorganic halide perovskite films. <i>Applied Physics Letters</i> , 2021 , 119, 071901	3.4	2	

581	Hysteresis-free perovskite solar cells with compact and nanoparticle NiO for indoor application. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 227, 111095	6.4	10
580	Efficient and Stable Perovskite Large Area Cells by Low-Cost Fluorene-Xantene-Based Hole Transporting Layer. <i>Energies</i> , 2021 , 14, 6081	3.1	1
579	Electromechanical field effects in InAs/GaAs quantum dots based on continuum k-lap-land atomistic tight-binding methods. <i>Computational Materials Science</i> , 2021 , 197, 110678	3.2	2
578	Practical development of efficient thermoelectric Photovoltaic hybrid systems based on wide-gap solar cells. <i>Applied Energy</i> , 2021 , 300, 117343	10.7	8
577	Mie-resonant mesoporous electron transport layer for highly efficient perovskite solar cells. <i>Nano Energy</i> , 2021 , 89, 106484	17.1	5
576	Effects of Crystal Morphology on the Hot-Carrier Dynamics in Mixed-Cation Hybrid Lead Halide Perovskites. <i>Energies</i> , 2021 , 14, 708	3.1	3
575	Spin Coating Immobilisation of C-N-TiO2 Co-Doped Nano Catalyst on Glass and Application for Photocatalysis or as Electron Transporting Layer for Perovskite Solar Cells. <i>Coatings</i> , 2020 , 10, 1029	2.9	4
574	An Interlaboratory Study on the Stability of All-Printable Hole Transport Material Pree Perovskite Solar Cells. <i>Energy Technology</i> , 2020 , 8, 2000134	3.5	8
573	Analysis of the Efficiency Losses in Hybrid Perovskite/PTAA Solar Cells with Different Molecular Weights: Morphology versus Kinetics. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6853-6859	6.1	13
57 ²	[1]Benzothieno[3,2-b][1]benzothiophene-Phthalocyanine Derivatives: A Subclass of Solution-Processable Electron-Rich Hole Transport Materials. <i>ChemPlusChem</i> , 2020 , 85, 2376-2386	2.8	7
571	Ion Migration-Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2000310	21.8	56
570	Improved Stability of Inverted and Flexible Perovskite Solar Cells with Carbon Electrode. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5126-5134	6.1	55
569	Fabrication of high efficiency, low-temperature planar perovskite solar cells via scalable double-step crystal engineering deposition method fully out of glove box. <i>Solar Energy</i> , 2020 , 206, 181-	·168	4
568	Two-dimensional materials in perovskite solar cells. <i>JPhys Energy</i> , 2020 , 2, 031003	4.9	13
567	The Molecular Weight Dependence of Thermoelectric Properties of Poly (3-Hexylthiophene). <i>Materials</i> , 2020 , 13,	3.5	11
566	Easy Strategy to Enhance Thermal Stability of Planar PSCs by Perovskite Defect Passivation and Low-Temperature Carbon-Based Electrode. <i>ACS Applied Materials & Electrodes</i> , 2020, 12, 32536-325	5 <i>47</i> ⁵	15
565	Automated Scalable Spray Coating of SnO2 for the Fabrication of Low-Temperature Perovskite Solar Cells and Modules. <i>Energy Technology</i> , 2020 , 8, 1901284	3.5	21
564	Thiazolo[5,4-d]thiazole-based organic sensitizers with improved spectral properties for application in greenhouse-integrated dye-sensitized solar cells. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2309-2321	5.8	17

(2020-2020)

563	Performance assessment of BIPV/T double-skin fallde for various climate zones in Australia: Effects on energy consumption. <i>Solar Energy</i> , 2020 , 199, 377-399	6.8	26
562	Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. <i>Joule</i> , 2020 , 4, 865-881	27.8	76
561	Synthesis and characterization of PEDOT-PEGDA blends for bioelectronic applications: surface properties and effects on cell morphology. <i>Flexible and Printed Electronics</i> , 2020 , 5, 014012	3.1	2
560	Dye-Sensitized Solar Cell 2020 , 287-333		
559	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. <i>Nature Energy</i> , 2020 , 5, 35-49	62.3	369
558	Perovskite solar cell improvement by gold nanoparticles prepared by laser ablation in liquid. <i>Journal of Physics: Conference Series</i> , 2020 , 1461, 012043	0.3	
557	Polymer/Inorganic Hole Transport Layer for Low-Temperature-Processed Perovskite Solar Cells. <i>Energies</i> , 2020 , 13, 2059	3.1	7
556	Ion Dynamics in Single and Multi-Cation Perovskite. <i>ECS Journal of Solid State Science and Technology</i> , 2020 , 9, 065015	2	3
555	Nano illumination microscopy: a technique based on scanning with an array of individually addressable nanoLEDs. <i>Optics Express</i> , 2020 , 28, 19044-19057	3.3	7
554	Semi-transparent triple cation Perovskite solar module exceeding 8% efficiency for BIPV applications 2020 ,		1
553	Giant Enhancement of Radiative Recombination in Perovskite Light-Emitting Diodes with Plasmonic Core-Shell Nanoparticles. <i>Nanomaterials</i> , 2020 , 11,	5.4	6
552	Photovoltaics. <i>EPJ Web of Conferences</i> , 2020 , 246, 00005	0.3	5
551	Metal-semiconductor transition in thin film MAPbI3 perovskite. <i>Applied Physics Letters</i> , 2020 , 117, 2619	03.4	2
550	Anodically electrodeposited NiO nanoflakes as hole selective contact in efficient air processed p-i-n perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 205, 110288	6.4	16
549	Perovskite solar cells 2020 , 163-228		5
548	Engineering the Charge Transport Properties of Resonant Silicon Nanoparticles in Perovskite Solar Cells. <i>Energy Technology</i> , 2020 , 8, 1900877	3.5	7
547	Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 121, 109703	16.2	37
546	Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach. <i>Nano Energy</i> , 2020 , 69, 104441	17.1	23

545	Improving the Performance of Printable Carbon Electrodes by Femtosecond Laser Treatment. <i>Journal of Carbon Research</i> , 2020 , 6, 48	3.3	1
544	Light-induced improvement of dopant-free PTAA on performance of inverted perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 215, 110606	6.4	13
543	Drift-Diffusion Study of the IQE Roll-Off in Blue Thermally Activated Delayed Fluorescence OLEDs. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000245	6.4	4
542	Simulating random alloy effects in III-nitride light emitting diodes. <i>Journal of Applied Physics</i> , 2020 , 128, 041102	2.5	9
541	Effect of Calcination Time on the Physicochemical Properties and Photocatalytic Performance of Carbon and Nitrogen Co-Doped TiO2 Nanoparticles. <i>Catalysts</i> , 2020 , 10, 847	4	6
540	Copper-Based Corrole as Thermally Stable Hole Transporting Material for Perovskite Photovoltaics. <i>Advanced Functional Materials</i> , 2020 , 30, 2003790	15.6	13
539	New Fullerene Derivative as an n-Type Material for Highly Efficient, Flexible Perovskite Solar Cells of a p-i-n Configuration. <i>Advanced Functional Materials</i> , 2020 , 30, 2004357	15.6	25
538	Colour-sensitive conjugated polymer inkjet-printed pixelated artificial retina model studied via a bio-hybrid photovoltaic device. <i>Scientific Reports</i> , 2020 , 10, 21457	4.9	5
537	Upscaling Inverted Perovskite Solar Cells: Optimization of Laser Scribing for Highly Efficient Mini-Modules. <i>Micromachines</i> , 2020 , 11,	3.3	15
536	Nonlinear Work Function Tuning of Lead-Halide Perovskites by MXenes with Mixed Terminations. <i>Advanced Functional Materials</i> , 2020 , 30, 1909028	15.6	28
535	Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. <i>Nature Materials</i> , 2019 , 18, 1228-1234	27	199
534	Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. <i>Nano Letters</i> , 2019 , 19, 684-691	11.5	53
533	Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar Modules. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	37
532	Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. <i>ACS Energy Letters</i> , 2019 , 4, 1862-1871	20.1	84
531	Analytic approximations for solar cell open circuit voltage, short circuit current and fill factor. <i>Solar Energy</i> , 2019 , 187, 358-367	6.8	5
530	Characterization of non-uniform InGaN alloys: spatial localization of carriers and optical properties. Japanese Journal of Applied Physics, 2019 , 58, SCCC03	1.4	2
529	Nanocomposites of Nickel Oxide and Zirconia for the Preparation of Photocathodes with Improved Performance in p-Type Dye-Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, D2	9 ∂ -B30	08
528	A Multiparticle Drift-Diffusion Model and its Application to Organic and Inorganic Electronic Device Simulation. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 2715-2722	2.9	8

(2018-2019)

527	Copper Iodide Interlayer for Improved Charge Extraction and Stability of Inverted Perovskite Solar Cells. <i>Materials</i> , 2019 , 12,	3.5	22	
526	The effect of water in Carbon-Perovskite Solar Cells with optimized alumina spacer. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 197, 76-83	6.4	16	
525	CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. <i>2D Materials</i> , 2019 , 6, 035007	5.9	20	
524	Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. <i>Materials</i> , 2019 , 12,	3.5	27	
523	Perovskite photo-detectors (PVSK-PDs) for visible light communication. <i>Organic Electronics</i> , 2019 , 69, 220-226	3.5	20	
522	Nanostructured TiO2 Grown by Low-Temperature Reactive Sputtering for Planar Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6218-6229	6.1	18	
521	Impact of Compositional Nonuniformity in (In,Ga)N-Based Light-Emitting Diodes. <i>Physical Review Applied</i> , 2019 , 12,	4.3	7	
520	Stability and Dark Hysteresis Correlate in NiO-Based Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1901642	21.8	41	
519	Energetic disorder in perovskite/polymer solar cells and its relationship with the interfacial carrier losses. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 20180315	3	4	
518	From Bulk to Surface: Sodium Treatment Reduces Recombination at the Nickel Oxide/Perovskite Interface. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900789	4.6	29	
517	Doping Strategy for Efficient and Stable Triple Cation Hybrid Perovskite Solar Cells and Module Based on Poly(3-hexylthiophene) Hole Transport Layer. <i>Small</i> , 2019 , 15, e1904399	11	38	
516	Scaling-up of Dye Sensitized Solar Modules. <i>World Scientific Series in Nanoscience and Nanotechnology</i> , 2019 , 423-485	0.1	4	
515	Low temperature process of homogeneous and pinhole free Perovskite layers for fully coated photovoltaic devices up to 256 cm2 area at ambient condition 2019 ,		1	
514	Large area perovskite solar modules with improved efficiency and stability 2019,		5	
513	Slot-Die-Printed Two-Dimensional ZrS Charge Transport Layer for Perovskite Light-Emitting Diodes. <i>ACS Applied Materials & Diodes & ACS Applied Materials & Diodes & </i>	9.5	10	
512	A PdPt decorated SnO2-rGO nanohybrid for high-performance resistive sensing of methane. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 95, 438-451	5.3	18	
511	Indium Tin Oxide B ased Fully Spray-Coated Inverted Solar Cells with Nontoxic Solvents: The Role of Buffer Layer Interface on Low-Bandgap Photoactive Layer Performance. <i>Energy Technology</i> , 2019 , 7, 1800627	3.5	4	
510	Graphene Oxide for DSSC, OPV and Perovskite Stability 2018 , 503-531		2	

509	On the importance of ferroelectric domains for the performance of perovskite solar cells. <i>Nano Energy</i> , 2018 , 48, 20-26	17.1	39
508	Thermal Model of High-Power Amplifiers Based on Time-Dependent Temperature Profiles Measured by Photoconductance. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 1739-1744	2.9	1
507	Closing the Cell-to-Module Efficiency Gap: A Fully Laser Scribed Perovskite Minimodule With 16% Steady-State Aperture Area Efficiency. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 151-155	3.7	24
506	Facile synthesis of a SnO@rGO nanohybrid and optimization of its methane-sensing parameters. <i>Talanta</i> , 2018 , 181, 422-430	6.2	48
505	Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. <i>Materials Today Energy</i> , 2018 , 9, 1-10	7	38
504	Photoelectrochemical and spectrophotometric studies on dye-sensitized solar cells (DSCs) and stable modules (DSCMs) based on natural apocarotenoids pigments. <i>Dyes and Pigments</i> , 2018 , 155, 75-8	3 3 .6	30
503	Bulk heterojunction polymer solar cell and perovskite solar cell: Concepts, materials, current status, and opto-electronic properties. <i>Solar Energy</i> , 2018 , 173, 407-424	6.8	40
502	Replacing noble metals with alternative metals in MID-IR frequency: A theoretical approach 2018,		2
501	Inverted perovskite solar cells with transparent hole transporting layer based on semiconducting nickel oxide 2018 ,		7
500	Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions. <i>Energies</i> , 2018 , 11, 155	3.1	14
499	New pyran-based dyes as efficient sensitizers of p-type dye-sensitized solar cells. <i>Solar Energy</i> , 2018 , 169, 237-241	6.8	16
498	Tris(ethylene diamine) nickel acetate as a promising precursor for hole transport layer in planar structured perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6179-6186	7.1	20
497	Graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-up. <i>2D Materials</i> , 2018 , 5, 045034	5.9	22
496	Fabrication and characterization of a sensitive, room temperature methane sensor based on SnO2@reduced graphene oxide-polyaniline ternary nanohybrid. <i>Materials Science in Semiconductor Processing</i> , 2018 , 88, 139-147	4.3	26
495	XPS depth profiles of organo lead halide layers and full perovskite solar cells by variable-size argon clusters 2018 ,		2
494	Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. <i>Nano Research</i> , 2018 , 11, 2669-2681	10	90
493	A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 659-671	13	40
492	Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. <i>Carbon</i> , 2018 , 129, 878-883	10.4	30

491	InGaN/GaN nanoLED Arrays as a Novel Illumination Source for Biomedical Imaging and Sensing Applications. <i>Proceedings (mdpi)</i> , 2018 , 2, 892	0.3	7
490	Unveiling the Chemical Composition of Halide Perovskite Films Using Multivariate Statistical Analyses. <i>ACS Applied Energy Materials</i> , 2018 , 1, 7174-7181	6.1	19
489	Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 42542-42551	9.5	38
488	Trap states in multication mesoscopic perovskite solar cells: A deep levels transient spectroscopy investigation. <i>Applied Physics Letters</i> , 2018 , 113, 263501	3.4	24
487	A novel class of dye-sensitized solar modules. Glass-plastic structure for mechanically stable devices 2018 ,		2
486	MoS Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CHNHPbI Perovskite Solar Cell with an Efficiency of over 20. <i>ACS Nano</i> , 2018 , 12, 10736-10754	16.7	138
485	Study of the Influence of the I-Based Electrolyte Composition on the Photoconversion Properties of p-Type Dye-Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2018 , 165, H889-H896	3.9	11
484	Anthocyanic pigments from elicited in vitro grown shoot cultures of Vaccinium corymbosum L., cv. Brigitta Blue, as photosensitizer in natural dye-sensitized solar cells (NDSSC). <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2018 , 188, 69-76	6.7	13
483	Resonant Silicon Nanoparticles for Enhanced Light Harvesting in Halide Perovskite Solar Cells. <i>Advanced Optical Materials</i> , 2018 , 6, 1800576	8.1	28
482	Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 185, 136-144	6.4	39
481	Graphene nanosheet/polyaniline composite for transparent hole transporting layer. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 65, 309-317	6.3	11
480	Electrochemical and Photoelectrochemical Properties of Screen-Printed Nickel Oxide Thin Films Obtained from Precursor Pastes with Different Compositions. <i>Journal of the Electrochemical Society</i> , 2017 , 164, H137-H147	3.9	35
479	Integration of dye-sensitized solar cells (DSC) on photobioreactors for improved photoconversion efficiency in microalgal cultivation. <i>Renewable Energy</i> , 2017 , 109, 13-21	8.1	11
478	KuQuinones as sensitizers for NiO based p-type dye-sensitized solar cells. <i>New Journal of Chemistry</i> , 2017 , 41, 2769-2779	3.6	22
477	Low-Cost Synthesis of Hole Transporting Materials for Efficient Perovskite Solar Cells. <i>CheM</i> , 2017 , 2, 612-613	16.2	6
476	Effect of Alkyl Chain Length on the Sensitizing Action of Substituted Non-Symmetric Squaraines for p-Type Dye-Sensitized Solar Cells. <i>ChemElectroChem</i> , 2017 , 4, 2385-2397	4.3	14
475	Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 215501	3	7
474	Pigments for natural dye-sensitized solar cells from in vitro grown shoot cultures. <i>Journal of Photonics for Energy</i> , 2017 , 7, 025503	1.2	3

473	Effects of thermal stress on hybrid perovskite solar cells with different encapsulation techniques 2017 ,		3
472	High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer. <i>ChemSusChem</i> , 2017 , 10, 3854-3860	8.3	85
471	On the Role of PTB7-Th:[70]PCBM Blend Concentration in ortho-Xylene on Polymer Solar-Cell Performance. <i>Energy Technology</i> , 2017 , 5, 2168-2174	3.5	8
470	Planar Perovskite Solar Cells: Local Structure and Stability Issues. <i>Solar Rrl</i> , 2017 , 1, 1700066	7.1	8
469	Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes. <i>Nanotechnology</i> , 2017 , 28, 275201	3.4	5
468	Gold and iodine diffusion in large area perovskite solar cells under illumination. <i>Nanoscale</i> , 2017 , 9, 470	00 747 06	5 103
467	Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area. <i>ACS Energy Letters</i> , 2017 , 2, 279-287	20.1	162
466	Synthesis and field emission characteristics of W 5 O 14 nanowires film. <i>Microelectronic Engineering</i> , 2017 , 170, 44-48	2.5	4
465	Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 033001	3	30
464	Influence of electromechanical coupling on optical properties of InGaN quantum-dot based light-emitting diodes. <i>Nanotechnology</i> , 2017 , 28, 015701	3.4	7
463	Application of nitrogen-doped TiO 2 nano-tubes in dye-sensitized solar cells. <i>Applied Surface Science</i> , 2017 , 399, 515-522	6.7	50
462	First Examples of Pyran Based Colorants as Sensitizing Agents ofp-Type Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2017 , 164, F1412-F1418	3.9	11
461	Graphene-Based Electron Transport Layers in Perovskite Solar Cells: A Step-Up for an Efficient Carrier Collection. <i>Advanced Energy Materials</i> , 2017 , 7, 1701349	21.8	60
460	A bioinspired dye sensitized solar cell based on a rhodamine-functionalized peptide immobilized on nanocrystalline TiO 2. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 347, 227-234	4.7	4
459	Stability of dye-sensitized solar cells under extended thermal stress. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 22546-22554	3.6	23
458	Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio. <i>IEEE Journal of Photovoltaics</i> , 2017 , 7, 1674-1680	3.7	83
457	Influence of the Conditions of Sensitization on the Characteristics ofp-DSCs Sensitized with Asymmetric Squaraines. <i>Journal of the Electrochemical Society</i> , 2017 , 164, H1099-H1111	3.9	5
456	Gas sensors for sustainable and safe integrated gasification-FC system. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 29606-29619	6.7	5

(2016-2017)

455	Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. <i>Nanoscale</i> , 2017 , 9, 62-69	7.7	45
454	Graphene and related 2D materials for high efficient and stable perovskite solar cells 2017 ,		6
453	Sensitivity of the Drift-Diffusion Approach in Estimating the Power Conversion Efficiency of Bulk Heterojunction Polymer Solar Cells. <i>Energies</i> , 2017 , 10, 285	3.1	1
452	Nano Energy Harvesting with Plasmonic Nano-Antennas: A review of MID-IR Rectenna and Application. <i>Advanced Electromagnetics</i> , 2017 , 6, 1	1.2	9
451	High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 436-445	6.8	99
450	Solar Cells: Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells (Adv. Energy Materials, 2016 , 6,	21.8	2
449	Hybrid perovskite as substituent of indium and gallium in light emitting diodes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2016 , 13, 958-961		5
448	Graphene-Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. <i>ChemSusChem</i> , 2016 , 9, 2609	-286319	133
447	Elemental Mapping of Perovskite Solar Cells by Using Multivariate Analysis: An Insight into Degradation Processes. <i>ChemSusChem</i> , 2016 , 9, 2673-2678	8.3	19
446	Electron-collecting oxide layers in inverted polymer solar cells via oxidation of thermally evaporated titanium. <i>Semiconductor Science and Technology</i> , 2016 , 31, 105003	1.8	
445	Boosting Perovskite Solar Cells Performance and Stability through Doping a Poly-3 (hexylthiophene) Hole Transporting Material with Organic Functionalized Carbon Nanostructures. <i>Advanced Functional Materials</i> , 2016 , 26, 7443-7453	15.6	72
444	Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1600920	21.8	135
443	Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations. <i>Physical Review Letters</i> , 2016 , 116, 027401	7.4	244
442	In situ observation of heat-induced degradation of perovskite solar cells. <i>Nature Energy</i> , 2016 , 1,	62.3	484
441	Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination. <i>Nano Energy</i> , 2016 , 30, 460-469	17.1	82
440	Novel pyran based dyes for application in dye sensitized solar cells. <i>Dyes and Pigments</i> , 2016 , 133, 395-4	10456	18
439	Statistic Determination of Storage Capacity for Photovoltaic Energy Imbalance Mitigation. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2016 , 138,	2.3	1

437	Tuning optical absorption in pyran derivatives for DSSC. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2016 , 321, 79-89	4.7	19
436	Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. <i>Nano Energy</i> , 2016 , 22, 349-360	17.1	142
435	Organic Photovoltaics for Energy Efficiency in Buildings 2016 , 321-355		1
434	Graphene-based large area dye-sensitized solar cell modules. <i>Nanoscale</i> , 2016 , 8, 5368-78	7.7	114
433	Stability of dye-sensitized solar cell under reverse bias condition: Resonance Raman spectroscopy combined with spectrally resolved analysis by transmittance and efficiency mapping. <i>Vibrational Spectroscopy</i> , 2016 , 84, 106-117	2.1	17
432	Photonic Flash Sintering of Ink-Jet-Printed Back Electrodes for Organic Photovoltaic Applications. <i>ACS Applied Materials & Damp; Interfaces</i> , 2016 , 8, 2325-35	9.5	20
431	Influence of TiO2 electronic structure and strong metal upport interaction on plasmonic Au photocatalytic oxidations. <i>Catalysis Science and Technology</i> , 2016 , 6, 3220-3229	5.5	38
430	Role of Ferroelectric Nanodomains in the Transport Properties of Perovskite Solar Cells. <i>Nano Letters</i> , 2016 , 16, 988-92	11.5	64
429	Modeling of Filamentary Conduction in Organic Thin Film Memories and Comparison With Experimental Data. <i>IEEE Nanotechnology Magazine</i> , 2016 , 15, 60-69	2.6	3
428	Systematic Study of the PCE and Device Operation of Organic Tandem Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2016 , 6, 202-210	3.7	10
427	Role of pH and pigment concentration for natural dye-sensitized solar cells treated with anthocyanin extracts of common fruits. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2016 , 316, 24-30	4.7	52
426	In situ observation of heat-induced degradation of perovskite solar cells 2016 , 191-192		
425	Diffusion Length Mapping for Dye-Sensitized Solar Cells. <i>Energies</i> , 2016 , 9, 686	3.1	4
424	Elemental mapping of perovskite solar cells using STEM and multivariate analysis 2016 , 812-813		
423	Beneficial Effect of Electron-Withdrawing Groups on the Sensitizing Action of Squaraines for p-Type Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16340-16353	3.8	41
422	Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithium-Neutralized Graphene Oxide as Electron Transporting Layer. <i>Advanced Functional Materials</i> , 2016 , 26, 2686-2694	15.6	154
421	Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance. <i>Scientific Reports</i> , 2016 , 6, 25757	4.9	50
420	Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. <i>APL Materials</i> , 2016 , 4, 091508	5.7	150

419	Laser Processing in the Manufacture of Dye-Sensitized and Perovskite Solar Cell Technologies. <i>ChemElectroChem</i> , 2016 , 3, 9-30	4.3	48
418	A benchmark study of commercially available copper nanoparticle inks for application in organic electronic devices. <i>Organic Electronics</i> , 2016 , 34, 130-138	3.5	2 0
417	An optical absorption model including absorber saturation. <i>Journal of Computational Electronics</i> , 2016 , 15, 1064-1070	1.8	1
416	Mesoscopic Perovskite Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 26989-26	i <u>9</u> 97	38
415	Encapsulation for long-term stability enhancement of perovskite solar cells. <i>Nano Energy</i> , 2016 , 30, 162	-172	200
414	Analytic approximations for solar cell open circuit voltage, short circuit current and fill factor 2016 ,		1
413	Cobalt Sulfide as Counter Electrode in p-Type Dye-Sensitized Solar Cells. <i>ChemistrySelect</i> , 2016 , 1, 2808-	-218815	16
412	Inkjet-Printed Resistive Switching Memory Based on Organic Dielectric Materials: From Single Elements to Array Technology. <i>Advanced Electronic Materials</i> , 2015 , 1, 1400003	6.4	17
411	Influence of the interface material layers and semiconductor energetic disorder on the open circuit voltage in polymer solar cells. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 690-699	2.6	31
410	Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. <i>ACS Nano</i> , 2015 , 9, 8420-9	16.7	158
409	A Drift-Diffusion Study on Charge Unbalancing Effects in Dye-Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2015 , 162, H753-H758	3.9	6
408	A multifinger microtriode with carbon nanotubes field emission cathode operating at GHz frequency. <i>Nanotechnology</i> , 2015 , 26, 215204	3.4	6
407	TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 140, 150-157	6.4	60
406	Proton induced tautomeric switching in N-rich aromatics with tunable acid-base character. <i>Journal of Molecular Structure</i> , 2015 , 1093, 119-124	3.4	11
405	Spray Coating for Polymer Solar Cells: An Up-to-Date Overview. Energy Technology, 2015, 3, 385-406	3.5	54
404	Vegetable-based dye-sensitized solar cells. <i>Chemical Society Reviews</i> , 2015 , 44, 3244-94	58.5	241
403	A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs. <i>Journal of Computational Electronics</i> , 2015 , 14, 593-60	13.8	5
402	The role of printing techniques for large-area dye sensitized solar cells. <i>Semiconductor Science and Technology</i> , 2015 , 30, 104003	1.8	65

401	Interface and Composition Analysis on Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 26176-83	9.5	99
400	Carbon nanotubes field emission enhancement using a laser post treatment. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2015 , 33, 022203	1.3	1
399	Opportunities of Atomic Layer Deposition for Perovskite Solar Cells. <i>ECS Transactions</i> , 2015 , 69, 15-22	1	3
398	Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p -type dye-sensitized solar cells. <i>Applied Surface Science</i> , 2015 , 356, 911-920	6.7	36
397	Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy. <i>Energy</i> , 2015 , 89, 678-686	7.9	147
396	A simple approach for the fabrication of perovskite solar cells in air. <i>Journal of Power Sources</i> , 2015 , 297, 504-510	8.9	55
395	A novel and large area suitable water-based ink for the deposition of cobalt sulfide films for solar energy conversion with iodine-free electrolytes. <i>Solar Energy</i> , 2015 , 122, 87-96	6.8	11
394	Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVOII laser patterned rutile TiOIhanorods. <i>Nanotechnology</i> , 2015 , 26, 494002	3.4	23
393	Comparison of the photoelectrochemical properties of RDS NiO thin films for p-type DSCs with different organic and organometallic dye-sensitizers and evidence of a direct correlation between cell efficiency and charge recombination. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 975-986	2.6	40
392	8.7% Power conversion efficiency polymer solar cell realized with non-chlorinated solvents. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 134, 194-198	6.4	37
391	Perovskite solar cells and large area modules (100km 2) based on an air flow-assisted PbI 2 blade coating deposition process. <i>Journal of Power Sources</i> , 2015 , 277, 286-291	8.9	285
390	The real TiO2/HTM interface of solid-state dye solar cells: role of trapped states from a multiscale modelling perspective. <i>Nanoscale</i> , 2015 , 7, 1136-44	7.7	24
389	Comparative analysis of the outdoor performance of a dye solar cell mini-panel for building integrated photovoltaics applications. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 215-225	6.8	32
388	Influence of random alloy fluctuations in InGaN/GaN quantum wells on LED efficiency 2015,		3
387	Inverted Bulk-Heterojunction Solar Cells using Polyethylenimine-Ethoxylated Processed from a Fully Aqueous Dispersion as Electron-Transport Layer. <i>Energy Technology</i> , 2015 , 3, 1152-1158	3.5	3
386	Molecular Ordering at the Interface Between Liquid Water and Rutile TiO2(110). <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500246	4.6	61
385	Thin-Film Photovoltaics 2014. International Journal of Photoenergy, 2015, 2015, 1-3	2.1	
384	Thiazolo[5,4-d]thiazole-based organic sensitizers with strong visible light absorption for transparent, efficient and stable dye-sensitized solar cells. <i>RSC Advances</i> , 2015 , 5, 32657-32668	3.7	33

383	Degradation mechanisms of dye-sensitized solar cells: Light, bias and temperature effects 2015,		2
382	Charge transport modelling in organic semiconductors: From diodes to transistors, memories and energy harvesters 2015 ,		2
381	Polyiodides formation in solvent based Dye Sensitized Solar Cells under reverse bias stress. <i>Journal of Power Sources</i> , 2015 , 287, 87-95	8.9	23
380	High efficient perovskite solar cells by employing zinc-phthalocyanine as hole transporting layer 2015 ,		2
379	Spray deposition of exfoliated MoS2 flakes as hole transport layer in perovskite-based photovoltaics 2015 ,		3
378	Atomistic simulation of GaAs/AlGaAs quantum dot/ring nanostructures 2015 ,		1
377	Perovskite solar cells stabilized by carbon nanostructure-P3HT blends 2015 ,		3
376	Two New Dyes with Carboxypyridinium Regioisomers as Anchoring Groups for Dye-Sensitized Solar Cells. <i>Synlett</i> , 2015 , 26, 2389-2394	2.2	2
375	Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries. <i>Energy Conversion and Management</i> , 2015 , 92, 1-9	10.6	22
374	Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates. <i>Advanced Energy Materials</i> , 2015 , 5, 1401808	21.8	216
373	3-D Simulation and Optimization of Organic Solar Cell With Periodic Back Contact Grating Electrode. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 591-596	3.7	12
372	The relevance of correct injection model to simulate electrical properties of organic semiconductors. <i>Organic Electronics</i> , 2014 , 15, 1557-1570	3.5	16
371	Taking Temperature Processing Out of Dye-Sensitized Solar Cell Fabrication: Fully Laser-Manufactured Devices. <i>Advanced Energy Materials</i> , 2014 , 4, 1400421	21.8	25
370	High efficiency CH3NH3PbI(3N)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. <i>Journal of Power Sources</i> , 2014 , 251, 152-156	8.9	164
369	Multi-wall carbon nanotube coating of fluorine-doped tin oxide as an electrode surface modifier for polymer solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 122, 297-302	6.4	23
368	Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3918-23	3.6	145
367	Multiscale simulation of solid state dye sensitized solar cells including morphology effects 2014,		1
366	Spray-Coated Polymer Solar Cells based on Low-Band-Gap Donors Processed with ortho-Xylene. <i>Energy Technology</i> , 2014 , 2, 786-791	3.5	10

365	Progress in flexible dye solar cell materials, processes and devices. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10788-10817	13	121
364	Atomistic simulations of InGaN/GaN random alloy quantum well LEDs. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2014 , 11, 632-634		11
363	Electrostatic Beam Focusing of Carbon Nanotubes Electron Source. <i>IEEE Transactions on Electron Devices</i> , 2014 , 61, 2558-2563	2.9	8
362	Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells. <i>Journal of Computational Electronics</i> , 2014 , 13, 933-942	1.8	22
361	Estimation of Energy Production of Dye-Sensitized Solar Cell Modules for Building-Integrated Photovoltaic Applications. <i>Energy Technology</i> , 2014 , 2, 531-541	3.5	31
360	Micro-Raman analysis of reverse bias stressed dye-sensitized solar cells. <i>RSC Advances</i> , 2014 , 4, 12366	3.7	20
359	Bragg grating nanostructuring of the TiO2 layer in dye sensitized solar cells: an efficient method to enhance light harvesting. <i>RSC Advances</i> , 2014 , 4, 43828-43833	3.7	2
358	Charge trapping models of resistance switching in organic bistable devices with embedded nanoparticles. <i>Organic Electronics</i> , 2014 , 15, 2792-2801	3.5	3
357	Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells. <i>Chemical Communications</i> , 2014 , 50, 13952-5	5.8	57
356	Influence of encapsulation materials on the optical properties and conversion efficiency of heat-sealed flexible polymer solar cells. <i>Surface and Coatings Technology</i> , 2014 , 255, 69-73	4.4	12
355	Accelerating atomistic calculations of quantum energy eigenstates on graphic cards. <i>Computer Physics Communications</i> , 2014 , 185, 2510-2518	4.2	6
354	A comparison of carboxypyridine isomers as sensitizers for dye-sensitized solar cells: assessment of device efficiency and stability. <i>Tetrahedron</i> , 2014 , 70, 6285-6295	2.4	22
353	Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes. <i>Applied Physics Letters</i> , 2014 , 105, 133504	3.4	59
352	Electrodeposited cobalt sulfide hole collecting layer for polymer solar cells. <i>Applied Physics Letters</i> , 2014 , 105, 063304	3.4	3
351	Diagnostic methods for the evaluation of the state of health (SOH) of NiMH batteries through electrochemical impedance spectroscopy 2014 ,		3
350	Modeling and simulation of energetically disordered organic solar cells. <i>Journal of Applied Physics</i> , 2014 , 116, 184502	2.5	25
349	Effect of alloy fluctuations in InGaN/GaN quantum wells on optical emission strength 2014,		3
348	Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs. <i>Materials Research Express</i> , 2014 , 1, 015040	1.7	36

Mesoscopic perovskite solar cells and modules 2014, 2 347 Large-Area Electrodeposition of Counterelectrodes Utilizing the Same Integrated Conductive Grid 346 10 for Fabrication of Parallel Flexible Dye Solar Cell Modules. IEEE Journal of Photovoltaics, 2014, 4, 1552-1959 Mimicking nature: a novel peptide-based bio-inspired approach for solar energy conversion. 345 3.2 27 ChemPhysChem, 2014, 15, 64-8 Degradation of electrical properties of small molecule organic solar cells under oxygen and 344 moisture. Materials Research Society Symposia Proceedings, 2014, 1695, 9 Laser processing of TiO2 films for dye solar cells: a thermal, sintering, throughput and embodied 6.8 343 30 energy investigation. Progress in Photovoltaics: Research and Applications, 2014, 22, 308-317 Outdoor and diurnal performance of large conformal flexible metal/plastic dye solar cells. Applied 342 10.7 21 Energy, **2014**, 113, 1155-1161 Solid state dye solar cell modules. Journal of Power Sources, 2014, 246, 361-364 8.9 341 15 Realization of high performance large area Z-series-interconnected opaque dye solar cell modules. 340 6.8 33 Progress in Photovoltaics: Research and Applications, 2013, 21, 1653-1658 Introduction to the OQE special issue on numerical simulation of optoelectronic devices NUSOD12. 339 2.4 Optical and Quantum Electronics, 2013, 45, 571-571 Blending CoS and Pt for amelioration of electrodeposited transparent counterelectrodes and the 338 13 33 efficiency of back-illuminated dye solar cells. Journal of Materials Chemistry A, 2013, 1, 12941 Strain evolution in GaN nanowires: From free-surface objects to coalesced templates. Journal of 2.5 50 337 Applied Physics, 2013, 114, 084307 Integrated tandem dye solar cells. RSC Advances, 2013, 3, 20273 336 19 3.7 AlGaN/GaN HEMT Degradation: An Electro-Thermo-Mechanical Simulation. IEEE Transactions on 335 2.9 9 Electron Devices, **2013**, 60, 3142-3148 Angular refractive path for optical enhancement and evaluation of dye solar cells. Solar Energy, 6.8 334 2013, 98, 553-560 Acceleration factor for ageing measurement of dye solar cells. Microelectronics Reliability, 2013, 53, 279-281 333 Design and Realization Aspects of 1-THz Cascade Backward Wave Amplifier Based on Double 64 2.9 332 Corrugated Wavequide. IEEE Transactions on Electron Devices, 2013, 60, 1236-1243 Fabrication of Fully-Spray-Processed Organic Photovoltaic Modules by using an Automated Process 331 3.5 24 in Air. Energy Technology, 2013, 1, 757-762 Coupling atomistic and continuous media models for electronic device simulation. Journal of 1.8 330 9 Computational Electronics, 2013, 12, 553-562

329	Study of the effects of UV-exposure on dye-sensitized solar cells 2013 ,		3
328	. IEEE Journal of Photovoltaics, 2013 , 3, 1004-1011	3.7	19
327	Influence of polar surface properties on InGaN/GaN core-shell nanorod LED properties. <i>Optical and Quantum Electronics</i> , 2013 , 45, 617-622	2.4	2
326	Fluoro-functionalization of vinylene units in a polyarylenevinylene for polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 715-727	13	22
325	Comparison between positive and negative constant current stress on dye-sensitized solar cells. <i>Microelectronics Reliability</i> , 2013 , 53, 1804-1808	1.2	4
324	Interferometric study of microchamber in large area dye solar cells. <i>Solar Energy</i> , 2013 , 95, 246-254	6.8	4
323	Carbon Nanotube Cathodes for Electron Gun. IEEE Electron Device Letters, 2013, 34, 698-700	4.4	15
322	A Parametric Study of InGaN/GaN Nanorod Core-Shell LEDs. <i>IEEE Transactions on Electron Devices</i> , 2013 , 60, 171-177	2.9	7
321	Model of a GaAs Quantum Dot Embedded in a Polymorph AlGaAs Nanowire. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 1-9	3.8	10
320	Blocking layer optimisation of poly(3-hexylthiopene) based Solid State Dye Sensitized Solar Cells. <i>Organic Electronics</i> , 2013 , 14, 1882-1890	3.5	34
319	Formulations and processing of nanocrystalline TiO2 films for the different requirements of plastic, metal and glass dye solar cell applications. <i>Nanotechnology</i> , 2013 , 24, 255401	3.4	15
318	Fully Plastic Dye Solar Cell Devices by Low-Temperature UV-Irradiation of both the Mesoporous TiO2 Photo- and Platinized Counter-Electrodes. <i>Advanced Energy Materials</i> , 2013 , 3, 1292-1298	21.8	60
317	Emission spectra and transient photovoltage in dye-sensitized solar cells under stress tests. <i>Journal of Applied Electrochemistry</i> , 2013 , 43, 209-215	2.6	11
316	Interplay between transparency and efficiency in dye sensitized solar cells. <i>Optics Express</i> , 2013 , 21, 323	35 .4 2	28
315	Particle tracing simulation of a vacuum electron gun for THz application 2013,		2
314	Reliability Study of Ruthenium-Based Dye-Sensitized Solar Cells (DSCs). <i>IEEE Journal of Photovoltaics</i> , 2012 , 2, 27-34	3.7	14
313	Electro-thermo-mechanical simulation of AlGaN/GaN HEMTs 2012,		1
312	Charge Transport in Solid-State Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 23882-23889	3.8	14

311	Reverse bias degradation in dye solar cells. Applied Physics Letters, 2012, 101, 123302	3.4	22
310	Generalization of thermodynamic potentials including information. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2012 , 391, 6337-6346	3.3	2
309	1-THz cascade backward wave amplifier 2012 ,		5
308	Cross-Bar Design of Nano-Vacuum Triode for High-Frequency Applications. <i>IEEE Electron Device Letters</i> , 2012 , 33, 1318-1320	4.4	4
307	Simulation of space charge limited organic non volatile memory elements. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1430, 7		
306	Correlation between Cell Performance and Physical Transport Parameters in Dye Solar Cells. Journal of Physical Chemistry C, 2012 , 116, 1151-1157	3.8	23
305	Physical and electrochemical analysis of an indoor-outdoor ageing test of large-area dye solar cell devices. <i>ChemPhysChem</i> , 2012 , 13, 2925-36	3.2	47
304	. IEEE Transactions on Electron Devices, 2012 , 59, 2979-2987	2.9	16
303	Time resolved temperature profiles of high power HEMTs by photocurrent spectral analysis. <i>Microelectronics Reliability</i> , 2012 , 52, 2077-2080	1.2	4
302	Reliability study of dye-sensitized solar cells by means of solar simulator and white LED. <i>Microelectronics Reliability</i> , 2012 , 52, 2495-2499	1.2	10
301	Fabrication and reliability of dye solar cells: A resonance Raman scattering study. <i>Microelectronics Reliability</i> , 2012 , 52, 2487-2489	1.2	12
300	Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties. <i>Energy and Environmental Science</i> , 2012 , 5, 8238	35.4	45
299	Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells. <i>Beilstein Journal of Nanotechnology</i> , 2012 , 3, 524-32	3	14
298	Optoelectronic properties of nanocolumnar InGaN/GaN quantum disk LEDs. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1315-1319		
297	It's not easy being green: Strategies for all-nitrides, all-colour solid state lighting. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 49-52	2.5	50
296	Dye solar cells efficiency maps: a parametric study. Optical and Quantum Electronics, 2012, 44, 155-160	2.4	4
295	Innovative structure for dye solar cells. Optical and Quantum Electronics, 2012, 44, 141-147	2.4	4
294	Electrochemistry in reverse biased dye solar cells and dye/electrolyte degradation mechanisms. <i>ChemPhysChem</i> , 2012 , 13, 2964-75	3.2	30

293	Mesoscale modeling of phononic thermal conductivity of porous Si: interplay between porosity, morphology and surface roughness. <i>Journal of Computational Electronics</i> , 2012 , 11, 8-13	1.8	29
292	Band gap engineering approaches to increase InGaN/GaN LED efficiency. <i>Optical and Quantum Electronics</i> , 2012 , 44, 83-88	2.4	16
291	Atomistic simulation of InGaN/GaN quantum disk LEDs. Optical and Quantum Electronics, 2012, 44, 89-94	42.4	5
290	Introduction to the OQE special issue on Numerical Simulation of Optoelectronic Devices (NUSODII). Optical and Quantum Electronics, 2012, 44, 65-65	2.4	
289	Airbrush Spray Coating of Amorphous Titanium Dioxide for Inverted Polymer Solar Cells. <i>International Journal of Photoenergy</i> , 2012 , 2012, 1-5	2.1	12
288	Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells. <i>Optics Express</i> , 2012 , 20 Suppl 6, A888-97	3.3	19
287	Efficient Cosensitization Strategy for Dye-Sensitized Solar Cells. <i>Applied Physics Express</i> , 2012 , 5, 022303	32.4	17
286	Reverse Bias Degradation in Shadowed Devices in TiO2 Dye-Sensitized Solar Cell Modules. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1442, 40		
285	Raster Scanning Laser and UV Processing of nanocrystalline TiO2 Films for Sintering in Dye Solar Cells: Device Performance, Throughput and Embodied Energy. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1447, 33		
284	Synthesis of a novel unsymmetrical Zn(II) phthalocyanine bearing a phenyl ethynyl moiety as sensitizer for dye-sensitized solar cells. <i>Dalton Transactions</i> , 2011 , 40, 38-40	4.3	15
283	Thermal stress effects on Dye-Sensitized Solar Cells (DSSCs). <i>Microelectronics Reliability</i> , 2011 , 51, 1762	-17 <u>2</u> 66	31
282	Theoretical Investigation of a Dye Solar Cell Wrapped Around an Optical Fiber. <i>IEEE Journal of Quantum Electronics</i> , 2011 , 47, 1214-1221	2	21
281	. IEEE Transactions on Electron Devices, 2011 , 58, 1425-1432	2.9	70
2 80	. IEEE Transactions on Electron Devices, 2011 , 58, 2759-2764	2.9	42
279	. IEEE Transactions on Electron Devices, 2011 , 58, 3200-3204	2.9	16
278	. IEEE Transactions on Electron Devices, 2011 , 58, 3179-3188	2.9	19
277	The OPTHER project: Progress toward the THz amplifier 2011 ,		5
276	PSPICE models for Dye solar cells and modules 2011 ,		1

275	Simulation of dye solar cells: through and beyond one dimension. <i>Journal of Computational Electronics</i> , 2011 , 10, 424-436	1.8	21
274	Physics based simulation of dye solar cells. <i>Optical and Quantum Electronics</i> , 2011 , 42, 809-815	2.4	1
273	Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 638-648	2.6	370
272	. IEEE Nanotechnology Magazine, 2011 , 10, 1285-1292	2.6	8
271	Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. <i>Nanotechnology</i> , 2011 , 22, 465401	3.4	132
270	Airbrush spray-coating of polymer bulk-heterojunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 1775-1778	6.4	98
269	Angular response of dye solar cells to solar and spectrally resolved light. <i>Applied Physics Letters</i> , 2011 , 99, 213301	3.4	24
268	Hybrid thermal-field emission of ZnO nanowires. <i>Applied Physics Letters</i> , 2011 , 99, 243108	3.4	9
267	Comparison of continuum and atomistic methods for the analysis of InAs/GaAs quantum dots 2011 ,		1
266	New Components for Dye-Sensitized Solar Cells. <i>International Journal of Photoenergy</i> , 2010 , 2010, 1-16	2.1	36
265	Bridged Phthalocyanine Systems for Sensitization of Nanocrystalline TiO2Films. <i>International Journal of Photoenergy</i> , 2010 , 2010, 1-11	2.1	11
264	Heating and cooling mechanisms in single-molecule junctions. <i>Physical Review B</i> , 2010 , 81,	3.3	34
263	Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. <i>International Journal of Molecular Sciences</i> , 2010 , 11, 254-67	6.3	190
262	Analytical Design Method for Corrugated Rectangular Waveguide SWS THz Vacuum Tubes. <i>Journal of Electromagnetic Waves and Applications</i> , 2010 , 24, 2479-2494	1.3	14
261	Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 1958-1961	3.9	81
260	Stability of dye-sensitized solar cells under light soaking test. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2049-2052	3.9	19
259	Angular and prism coupling refractive enhancement in dye solar cells. <i>Applied Physics Letters</i> , 2010 , 96, 103302	3.4	19
258	Optoelectronic and transport properties of nanocolumnar InGaN/GaN quantum disk LEDs 2010 ,		2

257	Thermal activation of mass transport and charge transfer at Pt in the I(3)(-)/I(-) electrolyte of a dye-sensitized solar cell. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10786-92	3.6	10
256	Handshaking multiscale thermal model of nanostructured devices 2010,		1
255	Carbon nanotubes/polydimethylsiloxanes systems for thermal management of miniaturized electronic components. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 8336-40	1.3	3
254	European research on THz vacuum amplifiers 2010 ,		1
253	Simulation of Inelastic Scattering in Molecular Junctions: Application to Inelastic Electron Tunneling Spectroscopy and Dissipation Effects. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 2512-2526	0.3	2
252	Photocurrent enhancement of dye solar cells by efficient light management. <i>Superlattices and Microstructures</i> , 2010 , 47, 197-201	2.8	6
251	Concurrent multiscale simulation of electronic devices. <i>Journal of Computational Electronics</i> , 2010 , 9, 262-268	1.8	1
250	Multiscale Modeling of Dye Solar Cells and Comparison With Experimental Data. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 1611-1618	3.8	21
249	Calculation of optical properties of a quantum dot embedded in a GaN/AlGaN nanocolumn. <i>Superlattices and Microstructures</i> , 2010 , 47, 123-128	2.8	3
248	Analysis and simulation of incident photon to current efficiency in dye sensitized solar cells. <i>Superlattices and Microstructures</i> , 2010 , 47, 192-196	2.8	11
247	Enhancement of carrier focusing GaN based vertical cavity surface emitting lasers and polariton lasers. <i>Applied Physics Letters</i> , 2009 , 94, 091105	3.4	1
246	Theory of an electrically injected bulk polariton laser. <i>Applied Physics Letters</i> , 2009 , 94, 011110	3.4	14
245	Efficient sintering of nanocrystalline titanium dioxide films for dye solar cells via raster scanning laser. <i>Applied Physics Letters</i> , 2009 , 95, 103312	3.4	48
244	Piezoresistive behaviour of flexible PEDOT:PSS based sensors. <i>Sensors and Actuators B: Chemical</i> , 2009 , 139, 304-309	8.5	124
243	Using EIS for diagnosis of dye-sensitized solar cells performance. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 2291-2295	2.6	73
242	Modeling of Dye sensitized solar cells using a finite element method. <i>Journal of Computational Electronics</i> , 2009 , 8, 398-409	1.8	27
241	Coupling atomistic and finite element approaches for the simulation of optoelectronic devices. <i>Optical and Quantum Electronics</i> , 2009 , 41, 671-679	2.4	7
240	Quantum confinement dependence of the energy splitting and recombination dynamics of A and B excitons in a GaN/AlGaN quantum well. <i>Physical Review B</i> , 2009 , 79,	3.3	6

239	Plasmon polaritons in the near infrared on fluorine doped tin oxide films. <i>Optics Express</i> , 2009 , 17, 1015	55.6,7	51
238	The European project OPTHER for the development of a THz tube amplifier 2009,		6
237	Design of an electron gun with FEA cathode for THz devices 2009,		1
236	Design of Submillimeter Schottky Mixers Under Flat-Band Conditions Using an Improved Drift-Diffusion Model. <i>IEEE Microwave and Wireless Components Letters</i> , 2009 , 19, 167-169	2.6	5
235	Nanotechnology radar thermal management. <i>IEEE Aerospace and Electronic Systems Magazine</i> , 2009 , 24, 11-16	2.4	1
234	Simulations of Optical Properties of a GaN Quantum Dot Embedded in a AlGaN Nanocolumn within a Mixed FEM/atomistic Method 2009 ,		1
233	On the effect of Al2O3 blocking layer on the performance of dye solar cells with cobalt based electrolytes. <i>Applied Physics Letters</i> , 2009 , 94, 173113	3.4	34
232	Corrugated waveguide slow-wave structure for THz travelling wave tube 2009,		4
231	Electronphonon scattering in molecular electronics: from inelastic electron tunnelling spectroscopy to heating effects. <i>New Journal of Physics</i> , 2008 , 10, 065020	2.9	23
230	Electronic and transport properties of contacts between molybdenum sulfide nanowires and gold electrodes. <i>Applied Physics Letters</i> , 2008 , 93, 083115	3.4	9
229	Electronic structure and optical properties of freestanding [0001] oriented GaN nanowires and nanotubes. <i>Journal of Applied Physics</i> , 2008 , 104, 073718	2.5	11
228	Field emission vacuum triode: THz waveguide solutions for the transmission lines 2008,		1
227	Resonant electron heating and molecular phonon cooling in single C60 junctions. <i>Physical Review Letters</i> , 2008 , 100, 136801	7.4	108
226	Preparation and Thermal Characterization of Carbon Nanotubes-Based Composites for Applications in Electronics Packaging 2008 ,		1
225	Non-equilibrium Green's functions in density functional tight binding: method and applications. <i>New Journal of Physics</i> , 2008 , 10, 065022	2.9	87
224	TiberCAD: Towards multiscale simulation of optoelectronic devices 2008,		1
223	Smart Materials and Concepts for Photovoltaics: Dye Sensitized Solar Cells. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2008 , 97-126	0.2	5
222	The impact of outdoor meteorological parameters on the performance of dye-sensitized solar cells. <i>Conference Record of the IEEE Photovoltaic Specialists Conference</i> , 2008 ,		1

221	The influence of mobility unbalance on GaN based vertical cavity surface emitting lasers. <i>Applied Physics Letters</i> , 2008 , 92, 151116	3.4	6
220	Flip-Cathode Design for Carbon Nanotube-Based Vacuum Triodes. <i>IEEE Electron Device Letters</i> , 2008 , 29, 111-113	4.4	7
219	TiberCAD: towards multiscale simulation of optoelectronic devices. <i>Optical and Quantum Electronics</i> , 2008 , 40, 1077-1083	2.4	22
218	Multiscale simulation of MOS systems based on high-libxides. <i>Journal of Computational Electronics</i> , 2008 , 7, 398-402	1.8	9
217	Joule heating in molecular tunnel junctions: application to C60. <i>Journal of Computational Electronics</i> , 2008 , 7, 384-389	1.8	6
216	DFT Modeling of Bulk-Modulated Carbon Nanotube Field-Effect Transistors. <i>IEEE Nanotechnology Magazine</i> , 2007 , 6, 13-21	2.6	11
215	Carbon nanotubes for gas detection: materials preparation and device assembly. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 225004	1.8	18
214	Field emission from silicon nanowires: Conditioning and stability. <i>Journal of Applied Physics</i> , 2007 , 102, 054906	2.5	11
213	The Green's function density functional tight-binding (gDFTB) method for molecular electronic conduction. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 5692-702	2.8	28
212	Simulation of exciton formation and transport in electrically driven polariton laser structures. <i>Superlattices and Microstructures</i> , 2007 , 41, 364-367	2.8	1
211	Thermal Maps of GaAs P-HEMT: A Novel System Based on the Photocurrent Spectral Analysis. <i>IEEE Transactions on Electron Devices</i> , 2007 , 54, 879-882	2.9	6
210	Influence of the SourceCate Distance on the AlGaN/GaN HEMT Performance. <i>IEEE Transactions on Electron Devices</i> , 2007 , 54, 1071-1075	2.9	48
209	Full-Band Tunneling in High-\$kappa\$ Oxide MOS Structures. <i>IEEE Transactions on Electron Devices</i> , 2007 , 54, 3168-3176	2.9	16
208	Atomistic Modeling of Gate-All-Around Si-Nanowire Field-Effect Transistors. <i>IEEE Transactions on Electron Devices</i> , 2007 , 54, 3159-3167	2.9	14
207	The simulation of molecular and organic devices: a critical review and look at future developments. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 87, 593-598	2.6	6
206	Simulation of piezoresistivity effect in FETs. <i>Journal of Computational Electronics</i> , 2007 , 5, 323-326	1.8	
205	Quasiparticle correction for electronic transport in molecular wires. <i>Journal of Computational Electronics</i> , 2007 , 6, 345-348	1.8	6
204	Heat dissipation and non-equilibrium phonon distributions in molecular devices. <i>Journal of Computational Electronics</i> , 2007 , 6, 335-339	1.8	1

(2006-2007)

203	Electronic and transport properties of silicon nanowires. <i>Journal of Computational Electronics</i> , 2007 , 6, 329-333	1.8	25
202	TiberCAD: A new multiscale simulator for electronic and optoelectronic devices. <i>Superlattices and Microstructures</i> , 2007 , 41, 381-385	2.8	6
201	Full-band tunneling in high-Idielectric MOS structures. <i>Microelectronics Reliability</i> , 2007 , 47, 694-696	1.2	2
200	Coupling of molecular vibrons with contact phonon reservoirs. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 215207	1.8	13
199	Theory of heat dissipation in molecular electronics. <i>Physical Review B</i> , 2007 , 75,	3.3	80
198	A priori method for propensity rules for inelastic electron tunneling spectroscopy of single-molecule conduction. <i>Physical Review B</i> , 2007 , 75,	3.3	77
197	Role of Charge Interaction in the Behavior of Organic Thin Film Transistors. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1003, 1		
196	Chapter 8 The gDFTB tool for molecular electronics. <i>Theoretical and Computational Chemistry</i> , 2007 , 17, 205-232		2
195	Effects of power converters on dye-sensitized solar cells 2007,		1
194	Tunneling Properties of MOS Systems Based on High-k Oxides 2007 , 153-156		1
193	Multiscale Simulation of Electronic and Optoelectronic Devices with TiberCAD 2007 , 245-248		2
192	Efficient Green Function Algorithms for Atomistic Modeling of Si Nanowire FETs 2007 , 325-328		1
191	Optimization of a NOx gas sensor based on single walled carbon nanotubes. <i>Sensors and Actuators B: Chemical</i> , 2006 , 118, 226-231	8.5	59
190	Experimental validation of GaN HEMTs thermal management by using photocurrent measurements. <i>IEEE Transactions on Electron Devices</i> , 2006 , 53, 182-188	2.9	31
189	The symmetry of single-molecule conduction. <i>Journal of Chemical Physics</i> , 2006 , 125, 184702	3.9	33
188	Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. <i>Journal of Chemical Physics</i> , 2006 , 124, 94704	3.9	96
187	Nanocomposites for organic and hybrid organic-inorganic solar cells 2006 , 6334, 139		2
186	Nonequilibrium phonon generation in coupled Wannier-Stark ladders from a semiconductor superlattice in a three-terminal device. <i>Journal of Applied Physics</i> , 2006 , 99, 124504	2.5	2

185	Elasticity theory of pseudomorphic heterostructures grown on substrates of arbitrary thickness. <i>Journal of Applied Physics</i> , 2006 , 100, 063514	2.5	36
184	Molecular origins of conduction channels observed in shot-noise measurements. <i>Nano Letters</i> , 2006 , 6, 2431-7	11.5	38
183	Tight-Binding DFT for Molecular Electronics (gDFTB) 2006 , 153-184		5
182	Incoherent tunneling and heat dissipation in molecular bridges. <i>Journal of Physics: Conference Series</i> , 2006 , 35, 349-356	0.3	
181	Modeling of carbon nanotube-based devices: from nanoFETs to THz emitters 2006,		4
180	One-dimensional screening effects in bulk-modulated carbon nanotube transistors. <i>Journal of Computational Electronics</i> , 2006 , 5, 97-101	1.8	3
179	Scaling effects in AlGaN/GaN HEMTs: Comparison between Monte Carlo simulations and experimental data. <i>Journal of Computational Electronics</i> , 2006 , 5, 109-113	1.8	2
178	Strain effects in SiN-passivated GaN-based HEMT devices. <i>Journal of Computational Electronics</i> , 2006 , 5, 115-118	1.8	4
177	Simulations of Inelastic Tunnelling in Molecular Bridges. Springer Proceedings in Physics, 2006, 183-186	0.2	2
176	Carbon Nanotubes Films for Sensing Applications: From Piezoresistive Sensor to Gas Sensing. <i>Springer Proceedings in Physics</i> , 2006 , 191-194	0.2	1
175	SWCNT aggregates for gas sensing applications 2005 , 5838, 69		О
174	Influence of grain sizes on the mobility of organic thin-film transistors. <i>Applied Physics Letters</i> , 2005 , 86, 263501	3.4	185
173	Negative quantum capacitance of gated carbon nanotubes. <i>Physical Review B</i> , 2005 , 72,	3.3	25
172	Carbon nanotubes dispersions in polymer matrix for strain sensing applications 2005,		1
171	Vibrational effects in the linear conductance of carbon nanotubes. Europhysics Letters, 2005, 71, 438-44	141.6	34
170	Gas sensing using single wall carbon nanotubes ordered with dielectrophoresis. <i>Sensors and Actuators B: Chemical</i> , 2005 , 111-112, 181-186	8.5	40
169	Quantum Capacitance Effects in Carbon Nanotube Field-Effect Devices. <i>Journal of Computational Electronics</i> , 2005 , 4, 51-55	1.8	5
168	Atomistic Simulation of the Electronic Transport in Organic Nanostructures: Electron-Phonon and Electron-Electron Interactions. <i>Journal of Computational Electronics</i> , 2005 , 4, 79-82	1.8	8

(2004-2005)

167	Investigation of the recombination dynamics in low In-content InGaN MQWs by means of cathodoluminescence and photoluminescence excitation. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 817-821		1
166	Strain effects in freestanding three-dimensional nitride nanostructures. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 3891-3894		15
165	GaN/AlGaN nanocavities with AlN/GaN Bragg reflectors grown in AlGaN nanocolumns by plasma assisted MBE. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 367-371	1.6	14
164	Thermal resistance measurement of GaAs MESFETs by means of photocurrent spectrum analysis and comparison with simulations. <i>Semiconductor Science and Technology</i> , 2005 , 20, 135-139	1.8	7
163	Quasiparticle energies for large molecules: A tight-binding-based Green Function approach. <i>Physical Review A</i> , 2005 , 71,	2.6	46
162	Carrier-confinement effects in nanocolumnar GaNAlxGa1NN quantum disks grown by molecular-beam epitaxy. <i>Physical Review B</i> , 2005 , 72,	3.3	49
161	Exciton interaction with piezoelectric and polar optical phonons in bulk wurtzite GaN. <i>Semiconductor Science and Technology</i> , 2004 , 19, S460-S462	1.8	1
160	Non-equilibrium electronic distribution within one period of InP-based quantum cascade lasers. <i>Semiconductor Science and Technology</i> , 2004 , 19, S342-S344	1.8	9
159	Dynamical nonlinearity in strained InGaAs (311)A sidewall quantum wires. <i>Applied Physics Letters</i> , 2004 , 84, 786-788	3.4	5
158	Tuning the piezoelectric fields in quantum dots: microscopic description of dots grown on (N11) surfaces. <i>IEEE Nanotechnology Magazine</i> , 2004 , 3, 124-128	2.6	4
157	Electronic transport in molecular devices: the role of coherent and incoherent electronphonon scattering. <i>Semiconductor Science and Technology</i> , 2004 , 19, S357-S361	1.8	5
156	Charge transport in pentacene and porphyrin-based organic thin film transistors. <i>Semiconductor Science and Technology</i> , 2004 , 19, S354-S356	1.8	11
155	Full band approach to tunneling in MOS structures. IEEE Transactions on Electron Devices, 2004, 51, 741-	·7 <u>:</u> 48j	21
154	Effects of grain boundaries, field-dependent mobility, and interface trap States on the electrical Characteristics of pentacene TFT. <i>IEEE Transactions on Electron Devices</i> , 2004 , 51, 1997-2003	2.9	143
153	Atomistic theory of transport in organic and inorganic nanostructures. <i>Reports on Progress in Physics</i> , 2004 , 67, 1497-1561	14.4	246
152	Synthesis and characterization of Efused porphyrin-BODIPY dyads. <i>Tetrahedron</i> , 2004 , 60, 1099-1106	2.4	69
151	Recombination dynamics in InGaN/GaN quantum wells: role of the piezoelectric field versus carrier localization. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, 1397-1402		2
150	Electronic and optical properties of [N11] grown nanostructures. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, 1511-1521		11

149	Effect of self-consistency and electron correlation on the spatial extension of bipolaronic defects. <i>Organic Electronics</i> , 2004 , 5, 167-174	3.5	5
148	Polarization field effects on the recombination dynamics in low-In-content InGaN multi-quantum wells. <i>Superlattices and Microstructures</i> , 2004 , 36, 615-624	2.8	7
147	Full-band approaches to the electronic properties of nanometer-scale MOS structures. <i>Solid-State Electronics</i> , 2004 , 48, 575-580	1.7	6
146	Organic/metal interfaces: an ab initio study of their structural and electronic properties. <i>Surface Science</i> , 2004 , 566-568, 628-632	1.8	7
145	Carrier recombination kinetics in (311)A InGaAs sidewall quantum wires. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 23, 449-454	3	4
144	Telethermography with thermostimulus in the study of temporal arteritis. <i>Infrared Physics and Technology</i> , 2004 , 46, 57-61	2.7	3
143	FEster energy transfer from poly(arylene\textit{Bthynylene})s to an erbium\textit{Borphyrin complex. Chemical Physics, 2004, 300, 217-225}	2.3	23
142	Barrier heights of organic modified Schottky contacts: theory and experiment. <i>Applied Surface Science</i> , 2004 , 234, 313-320	6.7	22
141	The influence of thermal fluctuations on the electronic transport of alkeno-thiolates. <i>IEEE Nanotechnology Magazine</i> , 2004 , 3, 353-357	2.6	4
140	Non-linear optical properties of InGaAs/AlGaAs nanostructures grown on (N11) surfaces. <i>Semiconductor Science and Technology</i> , 2004 , 19, S351-S353	1.8	О
139	Incoherent Electron Phonon Scattering in Octanethiols. <i>Nano Letters</i> , 2004 , 4, 2109-2114	11.5	100
138	Single wall carbon nanotube based aggregates and their electrical characterization. <i>Synthetic Metals</i> , 2004 , 145, 171-176	3.6	9
137	Optical far-IR wave generation - state-of-the-art and advanced device structures 2004,		3
136	Current collapse associated with surface states in GaN-based HEMTE. Theoretical/experimental investigations 2004 , 81-84		2
135	RFID: Ideas for Future Development. Springer Proceedings in Physics, 2004, 255-262	0.2	1
134	Comprehensive description of the dynamical screening of the internal electric fields of AlGaN/GaN quantum wells in time-resolved photoluminescence experiments. <i>Journal of Applied Physics</i> , 2003 , 93, 400-409	2.5	33
133	Coherent Phonon Scattering in Molecular Devices. Journal of Computational Electronics, 2003, 2, 251-2	56 1.8	3

(2003-2003)

131	Influence of Carrier Mobility and Interface Trap States on the Transfer and Output Characteristics of Organic Thin Film Transistors. <i>Journal of Computational Electronics</i> , 2003 , 2, 297-300	1.8	6
130	Schottky Barrier Height at Organic/Metal Junctions from First-Principles. <i>Journal of Computational Electronics</i> , 2003 , 2, 407-411	1.8	2
129	Monte Carlo Simulations of THz Quantum-Cascade Lasers. <i>Journal of Computational Electronics</i> , 2003 , 2, 433-437	1.8	5
128	Full-Band Tunneling Currents in Nanometer-Scale MOS Structures. <i>Journal of Computational Electronics</i> , 2003 , 2, 439-442	1.8	
127	Microscopic theory of nanostructured semiconductor devices: beyond the envelope-function approximation. <i>Semiconductor Science and Technology</i> , 2003 , 18, R1-R31	1.8	90
126	. IEEE Transactions on Electron Devices, 2003 , 50, 2009-2014	2.9	7
125	Electronic transport properties of molecular devices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 19, 139-144	3	9
124	Exciton relaxation in bulk wurtzite GaN: the role of piezoelectric interaction. <i>Physica Status Solidi A</i> , 2003 , 195, 618-627		11
123	Piezoelectric effects in sidewall quantum wires grown on patterned (311)A GaAs substrate. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2003 , 1433-1436		2
122	Tight-Binding Simulation of an InGaN/GaN Quantum Well with indium Concentration Fluctuation. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2003 , 298-301		1
121	Improvement of the Extended One-Pot (EOP) Procedure To Form Poly(aryleneethynylene)s and Investigation of Their Electrical and Optical Properties. <i>Macromolecules</i> , 2003 , 36, 2215-2223	5.5	32
120	Tailorable acceptor C(60-n)B(n) and donor C(60-m)N(m) pairs for molecular electronics. <i>Physical Review Letters</i> , 2003 , 90, 206602	7.4	69
119	Channel temperature measurement of PHEMT by means of optical probes. <i>Electronics Letters</i> , 2003 , 39, 247	1.1	7
118	Charge injection and transport in tetra-phenyl-porphyrin. Synthetic Metals, 2003, 138, 255-260	3.6	3
117	Tetra-phenyl porphyrin based thin film transistors. Synthetic Metals, 2003, 138, 261-266	3.6	51
116	Modulation of the electronic transport properties of carbon nanotubes with adsorbed molecules. <i>Synthetic Metals</i> , 2003 , 138, 89-93	3.6	11
115	Large drift-diffusion and Monte Carlo modeling of organic semiconductor devices. <i>Synthetic Metals</i> , 2003 , 138, 95-100	3.6	15
114	Experimental investigation and simulation of hybrid organic/inorganic Schottky diodes. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, S2719-S2728	1.8	61

113	Schottky barrier height at an organic/metal junction: A first-principles study of PTCDA/X (X=Al,Ag) contacts. <i>Physical Review B</i> , 2003 , 68,	3.3	41
112	Role of thermal vibrations in molecular wire conduction. <i>Physical Review B</i> , 2003 , 68,	3.3	26
111	Monte Carlo simulation of tunable mid-infrared emission from coupled WannierBtark ladders in semiconductor superlattices. <i>Applied Physics Letters</i> , 2003 , 82, 4029-4031	3.4	5
110	Enhancement of the effective tunnel mass in ultrathin silicon dioxide layers. <i>Journal of Applied Physics</i> , 2003 , 93, 2681-2690	2.5	50
109	Organic and Inorganic Nanostructures: An Atomistic Point of View. <i>Physica Status Solidi (B): Basic Research</i> , 2002 , 232, 5-12	1.3	
108	Coupled Free-Carrier and Exciton Dynamics in Bulk Wurtzite GaN. <i>Physica Status Solidi (B): Basic Research</i> , 2002 , 234, 901-905	1.3	2
107	Monte Carlo Description of Exciton Dynamics in GaN. <i>Physica Status Solidi A</i> , 2002 , 190, 141-147		3
106	Electron Acceleration by Light in Semiconductor Microcavities. <i>Physica Status Solidi A</i> , 2002 , 190, 175-1	79	
105	Polariton Lasing Due to the ExcitonElectron Scattering in Semiconductor Microcavities. <i>Physica Status Solidi A</i> , 2002 , 190, 181-186		1
104	Modeling of GaN-Based Resonant Tunneling Diodes: Influence of Polarization Fields. <i>Physica Status Solidi A</i> , 2002 , 190, 295-299		23
103	Dynamic Screening in AlGaN/GaN Multi Quantum Wells. <i>Physica Status Solidi A</i> , 2002 , 190, 81-86		6
102	Resonant and Non-Resonant Dynamics of Excitons and Free Carriers in GaN/AlGaN Quantum Wells. <i>Physica Status Solidi A</i> , 2002 , 190, 87-92		5
101	ExcitonElectron Scattering in Semiconductor Microcavities: Tool for Polariton Lasing. <i>Physica Status Solidi A</i> , 2002 , 190, 725-730		1
100	Static and dynamic screening of the polarization fields in nitride nanostructures: a theoretical and experimental study. <i>Physica B: Condensed Matter</i> , 2002 , 314, 35-38	2.8	3
99	Full-band approaches for the quantum treatment of nanometer-scale MOS structures. <i>Physica B: Condensed Matter</i> , 2002 , 314, 345-349	2.8	3
98	Theoretical tools for transport in molecular nanostructures. <i>Physica B: Condensed Matter</i> , 2002 , 314, 86-90	2.8	63
97	Hot electrons and hot phonons in quantum cascade lasers. <i>Physica B: Condensed Matter</i> , 2002 , 314, 336	5-3480	12
96	Tight-binding methods for transport and optical properties in realistic nanostructures. <i>Physica B: Condensed Matter</i> , 2002 , 314, 211-219	2.8	20

95	GaN-based modulation doped FETs and UV detectors. Solid-State Electronics, 2002, 46, 157-202	1.7	137
94	Molecular Devices Simulations Based on Density Functional Tight-Binding. <i>Journal of Computational Electronics</i> , 2002 , 1, 109-112	1.8	6
93	Resonant effect of Zener tunneling current. <i>Physical Review B</i> , 2002 , 65,	3.3	5
92	Influence of carrier mobility and contact barrier height on the electrical characteristics of organic transistors. <i>Applied Physics Letters</i> , 2002 , 81, 4646-4648	3.4	75
91	Transition from strong to weak coupling and the onset of lasing in semiconductor microcavities. <i>Physical Review B</i> , 2002 , 65,	3.3	83
90	Polariton lasing by exciton-electron scattering in semiconductor microcavities. <i>Physical Review B</i> , 2002 , 65,	3.3	144
89	Room-temperature polariton lasers based on GaN microcavities. <i>Applied Physics Letters</i> , 2002 , 81, 412-4	11 31 4	156
88	Atomistic simulations of complex materials: ground-state and excited-state properties. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 3015-3047	1.8	384
87	Electron optical-phonon interaction in the In1 GaxAs/In1 AlyAs superlattice. <i>Physical Review B</i> , 2002 , 65,	3.3	12
86	Monte Carlo simulation of electron dynamics in superlattice quantum cascade lasers. <i>Applied Physics Letters</i> , 2002 , 80, 920-922	3.4	29
85	Charge Screening of Polarization Fields in Nitride Nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2001 , 228, 553-558	1.3	4
84	Optical and Electronic Properties of GaN Based Heterostructures: A Self-Consistent Time-Dependent Approach. <i>Physica Status Solidi A</i> , 2001 , 183, 121-124		7
83	Tuning Optical Properties of GaN-Based Nanostructures by Charge Screening. <i>Physica Status Solidi A</i> , 2001 , 183, 81-85		13
82	Quasi Two-Dimensional Modeling of GaN-Based MODFETs. <i>Physica Status Solidi A</i> , 2001 , 188, 251-254		1
81	Recombination Dynamics in GaN/AlGaN Quantum Wells: The Role of Built-in Fields. <i>Physica Status Solidi A</i> , 2001 , 188, 851-855		6
80	Charge storage and screening of the internal field in GaN/AlGaN quantum wells. <i>Journal of Crystal Growth</i> , 2001 , 230, 492-496	1.6	9
79	Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs. <i>IEEE Transactions on Electron Devices</i> , 2001 , 48, 450-457	2.9	69
78	Breakdown quenching in high electron mobility transistor by using body contact. <i>IEEE Transactions on Electron Devices</i> , 2001 , 48, 2188-2191	2.9	10

77	Experimental and Monte Carlo analysis of near-breakdown phenomena in GaAs-based heterostructure FETs. <i>Semiconductor Science and Technology</i> , 2001 , 16, 315-319	1.8	3
76	Scanning tunneling current-voltage spectroscopy on poly(p-phenylene vinylene) films: A nanoscale probe for the electronic conduction. <i>Physical Review B</i> , 2001 , 63,	3.3	24
75	Tuning the optical properties of thiophene oligomers toward infrared emission: A theoretical study. <i>Journal of Chemical Physics</i> , 2001 , 115, 4919-4923	3.9	15
74	Mesoscopic-capacitor effect in GaN/AlxGa1NN quantum wells: Effects on the electronic states. <i>Physical Review B</i> , 2001 , 63,	3.3	21
73	Photoluminescence Efficiency of Substituted Quaterthiophene Crystals. <i>Physical Review Letters</i> , 2001 , 86, 167-170	7.4	44
72	Electronic band structure and intermolecular interaction in substituted thiophene polymorphs. <i>Physical Review B</i> , 2001 , 63,	3.3	14
71	Theory of photon Bloch oscillations in photonic crystals. <i>Physical Review B</i> , 2001 , 63,	3.3	44
70	Gain dynamics in traveling-wave semiconductor optical amplifiers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2001 , 7, 293-299	3.8	21
69	Efficient self-consistent pseudopotential calculation of nanostructured devices. <i>Physical Review B</i> , 2001 , 64,	3.3	19
68	Simulation of Optoelectronic Devices. <i>VLSI Design</i> , 2001 , 13, 23-36		
67	Microscopic Modeling of GaN-based Heterostructures. VLSI Design, 2001, 13, 387-391		
66	Self-consistent Full-band Modeling of Quantum Semiconductor Nanostructures. <i>VLSI Design</i> , 2001 , 13, 91-95		1
65	Density-functional Based Tight-binding Calculations on Thiophene Polymorphism. <i>VLSI Design</i> , 2001 , 13, 393-397		
64	Bloch oscillations of light in laterally confined Bragg mirrors and multiple coupled microcavities. <i>Springer Proceedings in Physics</i> , 2001 , 689-690	0.2	
63	Propagation and Scattering of Exciton-Polaritons in Nitride-Based Multiple Quantum Wells. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 639, 991		
62	Semiconductor Nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2000 , 217, 703-722	1.3	15
62	Semiconductor Nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2000 , 217, 703-722 Polarization Grating in Semiconductor Films Induced by Exciton [Polaritons. <i>Physica Status Solidi A</i> , 2000 , 178, 581-585	1.3	15

(1999-2000)

59	Effects of the spontaneous polarization and piezoelectric fields on the luminescence spectra of GaN/Al0.15Ga0.85N quantum wells. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 929-933	3	7
58	Theoretical study, modeling and simulation of SL quantum cascade lasers. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2000 , 7, 20-24	3	13
57	Exciton dynamics and valence band mixing in tensile-strained semiconductor quantum wells. <i>Semiconductor Science and Technology</i> , 2000 , 15, 189-196	1.8	4
56	Doping screening of polarization fields in nitride heterostructures. <i>Applied Physics Letters</i> , 2000 , 76, 39	5 9. 495	2 ₅₀
55	Photonic Bloch oscillations in laterally confined Bragg mirrors. <i>Physical Review B</i> , 2000 , 61, 4413-4416	3.3	44
54	Well-width dependence of the ground level emission of GaN/AlGaN quantum wells. <i>Journal of Applied Physics</i> , 2000 , 87, 2289-2292	2.5	38
53	Monte Carlo study of the dynamic breakdown effects in HEMT's. <i>IEEE Electron Device Letters</i> , 2000 , 21, 149-151	4.4	22
52	Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra. <i>Physical Review B</i> , 2000 , 61, 2711-2715	3.3	158
51	EFused Oligoporphyrins:□A Novel Approach to a New Type of Extended Aromatic System. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11295-11302	16.4	59
50	Many-body effects on excitons properties in GaN/AlGaN quantum wells. <i>Applied Physics Letters</i> , 2000 , 76, 1042-1044	3.4	26
49	Influence of Internal Electric Fields on the Ground Level Emission of GaN/AlGaN Multi-Quantum Wells. <i>MRS Internet Journal of Nitride Semiconductor Research</i> , 2000 , 5, 970-976		
48	Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. <i>Applied Physics Letters</i> , 1999 , 74, 2002-2004	3.4	233
47	Optical polarization grating in semiconductors induced by exciton polaritons. <i>Physical Review B</i> , 1999 , 60, 15554-15557	3.3	8
46	AlN and GaN epitaxial heterojunctions on 6HBiC(0001): Valence band offsets and polarization fields. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 1674		44
45	Theoretical study and simulation of electron dynamics in quantum cascade lasers. <i>Physica B: Condensed Matter</i> , 1999 , 272, 219-222	2.8	9
44	Carrier screening and polarization fields in nitride-based heterostructure devices. <i>Physica B: Condensed Matter</i> , 1999 , 272, 397-401	2.8	3
43	Quantum effects in nanometer MOS structures. <i>Physica B: Condensed Matter</i> , 1999 , 272, 546-549	2.8	4
42	Modelling of semiconductor nanostructured devices within the tight-binding approach. <i>Journal of Physics Condensed Matter</i> , 1999 , 11, 6035-6043	1.8	2

41	Study of gain compression mechanisms in multiple-quantum-well In/sub 1-x/Ga/sub x/As semiconductor optical amplifiers. <i>IEEE Journal of Quantum Electronics</i> , 1999 , 35, 1697-1703	2	13
40	Effects of macroscopic polarization in III-V nitride multiple quantum wells. <i>Physical Review B</i> , 1999 , 60, 8849-8858	3.3	432
39	Influence of Internal Electric Fields on the Ground Level Emission of GaN/AlGaN Multi-Quantum Wells. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 595, 1		
38	Polarization-independent /spl delta/-strained semiconductor optical amplifiers: a tight-binding study. <i>IEEE Journal of Quantum Electronics</i> , 1998 , 34, 1730-1739	2	21
37	Microscopic Theory of Quantum-Transport Phenomena in Mesoscopic Systems: A Monte Carlo Approach. <i>Physical Review Letters</i> , 1998 , 80, 3348-3351	7.4	44
36	. Semiconductor Science and Technology, 1998 , 13, 858-863	1.8	4
35	Off-resonance 🛚 mixing in semiconductor quantum wires. <i>Physical Review B</i> , 1998 , 57, 9770-9779	3.3	8
34	Relationship between optical and structural properties in substituted quaterthiophene crystals. <i>Applied Physics Letters</i> , 1998 , 73, 2414-2416	3.4	25
33	Non Local Impact Ionization Effects in Semiconductor Devices. VLSI Design, 1998, 6, 291-297		1
32	A Generalized Monte Carlo Approach for the Analysis of Quantum-Transport Phenomena in Mesoscopic Systems: Interplay Between Coherence and Relaxation. <i>VLSI Design</i> , 1998 , 8, 197-202		
31	Optical and Electronic Properties of Semiconductor 2D Nanosystems: Self-consistent Tight-binding Calculations. <i>VLSI Design</i> , 1998 , 8, 469-473		
30	Conduction-band mixing in T- and V-shaped quantum wires. <i>Physical Review B</i> , 1997 , 56, R1668-R1671	3.3	30
29	Self-Consistent Tight-Binding Methods Applied to Semiconductor Nanostructures. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 491, 389		4
28	Enhanced Zener tunneling in silicon. Solid State Communications, 1997, 101, 921-923	1.6	8
27	Mixing in T- and V-Shaped Quantum Wires. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 275-278	31.3	1
26	Analysis of Quantum-Transport Phenomena in Mesoscopic Systems: A Monte Carlo Approach. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 339-342	1.3	6
25	Wannier-Stark Resonance of Zener Current through a Superlattice in a pth Diode. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 368-373	1.3	5
24	Enhanced Coherent Zener Tunneling in Indirect Gap Semiconductors. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 420-422	1.3	1

23	Experimental and Monte Carlo analysis of impact-ionization in AlGaAs/GaAs HBT's. <i>IEEE Transactions on Electron Devices</i> , 1996 , 43, 1769-1777	2.9	17
22	Self-consistent tight-binding calculations of electronic and optical properties of semiconductor nanostructures. <i>Solid State Communications</i> , 1996 , 98, 803-806	1.6	36
21	Wannier-Stark oscillations in Zener tunneling currents. Solid-State Electronics, 1996, 40, 245-247	1.7	6
20	Stark-ladder transition in a (GaAs)5/(AlAs)2 Zener tunneling diode. <i>Physica B: Condensed Matter</i> , 1996 , 227, 206-209	2.8	3
19	Wannier-Stark Resonances in DC Transport and Electrically Driven Bloch Oscillations 1996 , 143-146		
18	Valley mixing in resonant tunnelling diodes with applied hydrostatic pressure. <i>Semiconductor Science and Technology</i> , 1995 , 10, 1673-1679	1.8	16
17	Wannier-Stark Localization in Superlattices. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4519-4521	1.4	12
16	Thermography and the possibilities for its applications in clinical and experimental dermatology. <i>Clinics in Dermatology</i> , 1995 , 13, 329-36	3	82
15	Theory of Zener tunnelling and Stark ladders in semiconductors. <i>Semiconductor Science and Technology</i> , 1994 , 9, 497-499	1.8	3
14	Monte Carlo simulation of minority carrier transport and light emission phenomena in GaAs devices. <i>Semiconductor Science and Technology</i> , 1994 , 9, 666-670	1.8	4
13	Theory of Zener tunneling and Wannier-Stark states in semiconductors. <i>Physical Review B</i> , 1994 , 50, 83	58 . §37	7791
12	. IEEE Electron Device Letters, 1993 , 14, 103-106	4.4	22
11	. IEEE Electron Device Letters, 1993 , 14, 77-79	4.4	17
10	Study of surface field in n-type GaAs before and after surface doping with H2. <i>Applied Surface Science</i> , 1992 , 56-58, 356-362	6.7	6
9	Simulation of a THz Vacuum Triode Using Carbon-Nanotube Emitter		1
8	Carbon nanotube/conducting polymer composites for electronic application: materials preparation and devices assembling		1
7	Controlled growth of ordered SWCNTs for the realization of multielectrode field emitter devices		1
6	Atomistic tight-binding calculations for the investigation of transport in extremely scaled SOI transisto	ors	1

5	Characterization of hole transport phenomena in AlGaAs-InGaAs HEMT's biased in impact-ionization regime		3
4	Spectral Changes by Dye Sensitized Solar Modules Influence the Pigment Composition and Productivity of Arthrospira maxima and Increase the Overall Energy Efficiency. <i>Advanced Sustainable Systems</i> ,2100346	5.9	2
3	Reducing Losses in Perovskite Large Area Solar Technology: Laser Design Optimization for Highly Efficient Modules and Minipanels. <i>Advanced Energy Materials</i> ,2103420	21.8	5
2	All-Slot-Die-Coated Inverted Perovskite Solar Cells in Ambient Conditions with Chlorine Additives. <i>Solar Rrl</i> ,2100807	7.1	6
1	Nanophotonics for Perovskite Solar Cells. Advanced Photonics Research, 2100326	1.9	3