
Olga Bulgakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8747116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The level of free-circulating mtDNA in patients with radon-induced lung cancer. Environmental Research, 2022, 207, 112215.	7.5	6
2	The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines, 2022, 10, 428.	3.2	5
3	Role of microRNAs in Lung Carcinogenesis Induced by Asbestos. Journal of Personalized Medicine, 2021, 11, 97.	2.5	10
4	Involvement of Circulating Cell-Free Mitochondrial DNA and Proinflammatory Cytokines in Pathogenesis of Chronic Obstructive Pulmonary Disease and Lung Cancer. Asian Pacific Journal of Cancer Prevention, 2021, 22, 1927-1933.	1.2	8
5	Radon Biomonitoring and microRNA in Lung Cancer. International Journal of Molecular Sciences, 2020, 21, 2154.	4.1	27
6	The cell cycle regulatory gene polymorphisms TP53 (rs1042522) and MDM2 (rs2279744) in lung cancer: a meta-analysis. Vavilovskii Zhurnal Genetiki I Selektsii, 2020, 24, 77-784.	1.1	1
7	Association of polymorphism <i>TP53</i> Arg72Pro with radon-induced lung cancer in the Kazakh population. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 23, 594-599.	1.1	4
8	The plasma levels of hsa-miR-19b-3p, hsa-miR-125b-5p and hsa-miR-155b-5p in NSCLC patients. International Journal of Biology and Chemistry, 2019, 12, 80-85.	0.3	0
9	miR‑19 in blood plasma reflects lung cancer occurrence but is not specifically associated with radon exposure. Oncology Letters, 2018, 15, 8816-8824.	1.8	13
10	Residential Radon Exposure and Lung Cancer Risk in Kazakhstan. , 2017, , .		2
11	The health effects of radon and uranium on the population of Kazakhstan. Genes and Environment, 2015, 37, 18.	2.1	39
12	Autoregulation of the Mechanistic Target of Rapamycin (mTOR) Complex 2 Integrity Is Controlled by an ATP-dependent Mechanism. Journal of Biological Chemistry, 2013, 288, 27019-27030.	3.4	31
13	Integrity of mTORC2 is dependent on the rictor Gly-934 site. Oncogene, 2012, 31, 2115-2120.	5.9	19
14	Isolation of the mTOR Complexes by Affinity Purification. Methods in Molecular Biology, 2012, 821, 59-74.	0.9	9