Jun Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8747031/publications.pdf

Version: 2024-02-01

47	1 677	236925	302126
papers	1,677 citations	h-index	g-index
51	51	51	1532
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Allele segregation analysis of F1 hybrids between independent Brassica allohexaploid lineages. Chromosoma, 2022, 131, 147-161.	2.2	10
2	AtMIF1 increases seed oil content by attenuating GL2 inhibition. New Phytologist, 2021, 229, 2152-2162.	7.3	10
3	Physical Mapping of QTL in Four Spring Wheat Populations under Conventional and Organic Management Systems. I. Earliness. Plants, 2021, 10, 853.	3.5	13
4	Genome structural evolution in Brassica crops. Nature Plants, 2021, 7, 757-765.	9.3	31
5	Challenges and prospects for a potential allohexaploid Brassica crop. Theoretical and Applied Genetics, 2021, 134, 2711-2726.	3.6	15
6	Exploring the gene pool of <i>Brassica napus</i> by genomicsâ€based approaches. Plant Biotechnology Journal, 2021, 19, 1693-1712.	8.3	34
7	Physical mapping of QTL associated with agronomic and end-use quality traits in spring wheat under conventional and organic management systems. Theoretical and Applied Genetics, 2021, 134, 3699-3719.	3.6	23
8	Genome-wide prediction for hybrids between parents with distinguished difference on exotic introgressions in Brassica napus. Crop Journal, 2021, 9, 1169-1178.	5.2	6
9	Comparative transcriptome and iTRAQ-based proteome analysis in mature leaves of Brassica carinata provides insights into the purple leaf color diversity. Journal of Horticultural Science and Biotechnology, 2021, 96, 444-455.	1.9	1
10	A Two-Stage Method for Improving the Prediction Accuracy of Complex Traits by Incorporating Genotype by Environment Interactions inBrassica napus. Discrete Dynamics in Nature and Society, 2020, 2020, 1-12.	0.9	1
11	Genetic dissection of the shoot and root ionomes of Brassica napus grown with contrasting phosphate supplies. Annals of Botany, 2020, 126, 119-140.	2.9	8
12	Characterization and expression profiles of miRNAs in the triploid hybrids of Brassica napus and Brassica rapa. BMC Genomics, 2019, 20, 649.	2.8	7
13	Genomeâ€wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal, 2019, 17, 1998-2010.	8.3	54
14	Reconstituting the genome of a young allopolyploid crop, <i>Brassica napus, </i> with its related species. Plant Biotechnology Journal, 2019, 17, 1106-1118.	8.3	18
15	Genetic changes in a novel breeding population of <i>Brassica napus</i> synthesized from hundreds of crosses between <i>B.Ârapa</i> and <i>B.Âcarinata</i> . Plant Biotechnology Journal, 2018, 16, 507-519.	8.3	39
16	Wholeâ€transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (<i>Brassica napus</i> L.). Plant, Cell and Environment, 2018, 41, 1935-1947.	5.7	34
17	Integrative analysis of genomeâ€wide Inc <scp>RNA</scp> and <scp>mRNA</scp> expression in newly synthesized <i>Brassica</i> hexaploids. Ecology and Evolution, 2018, 8, 6034-6052.	1.9	20
18	Mapping QTLs Controlling Agronomic Traits in the â€~Attila' × â€~CDC Go' Spring Wheat Population un Organic Management using 90K SNP Array. Crop Science, 2017, 57, 365-377.	nder 1.8	30

#	Article	IF	Citations
19	Assembly and comparison of two closely related <i>Brassica napus</i> genomes. Plant Biotechnology Journal, 2017, 15, 1602-1610.	8.3	150
20	Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theoretical and Applied Genetics, 2017, 130, 1569-1585.	3.6	78
21	Breeding histories and selection criteria for oilseed rape in Europe and China identified by genome wide pedigree dissection. Scientific Reports, 2017, 7, 1916.	3.3	16
22	Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population. Molecular Breeding, 2017, 37, 1.	2.1	21
23	Investigation of the Genetic Diversity and Quantitative Trait Loci Accounting for Important Agronomic and Seed Quality Traits in Brassica carinata. Frontiers in Plant Science, 2017, 8, 615.	3.6	23
24	Hybrid Performance of an Immortalized F2 Rapeseed Population Is Driven by Additive, Dominance, and Epistatic Effects. Frontiers in Plant Science, 2017, 8, 815.	3.6	16
25	QTLs associated with agronomic traits in the Attila $ ilde{A}-$ CDC Go spring wheat population evaluated under conventional management. PLoS ONE, 2017, 12, e0171528.	2.5	68
26	Introgressing Subgenome Components from Brassica rapa and B. carinata to B. juncea for Broadening Its Genetic Base and Exploring Intersubgenomic Heterosis. Frontiers in Plant Science, 2016, 7, 1677.	3.6	28
27	QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Scientific Reports, 2016, 6, 33113.	3.3	55
28	Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics, 2016, 17, 18.	2.8	32
29	G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresource Technology, 2016, 203, 325-333.	9.6	43
30	Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data. PLoS ONE, 2016, 11, e0166624.	2.5	29
31	Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization. Journal of Proteomics, 2015, 112, 274-284.	2.4	16
32	Identification, evolution, and expression partitioning of miRNAs in allopolyploid <i>Brassica napus</i> Journal of Experimental Botany, 2015, 66, 7241-7253.	4.8	44
33	Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae. BMC Plant Biology, 2015, 15, 149.	3.6	9
34	Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Annals of Botany, 2014, 114, 549-559.	2.9	52
35	Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids. Plant Molecular Biology, 2014, 85, 287-299.	3.9	23
36	Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata. Theoretical and Applied Genetics, 2014, 127, 1593-1605.	3.6	28

#	Article	IF	CITATIONS
37	A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics, 2013, 14, 277.	2.8	62
38	Tracing the Transcriptomic Changes in Synthetic Trigenomic allohexaploids of Brassica Using an RNA-Seq Approach. PLoS ONE, 2013, 8, e68883.	2.5	39
39	A genetic linkage map of Brassica carinata constructed with a doubled haploid population. Theoretical and Applied Genetics, 2012, 125, 1113-1124.	3.6	33
40	Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012, 184, 151-164.	1.2	17
41	<i>De novo</i> genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of <i>Brassica napus</i> derived from interspecific hybridization with <i>Brassica rapa</i> . Plant Journal, 2011, 68, 212-224.	5.7	78
42	A Dynamic and Complex Network Regulates the Heterosis of Yield-Correlated Traits in Rapeseed (Brassica napus L.). PLoS ONE, 2011, 6, e21645.	2.5	72
43	Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theoretical and Applied Genetics, 2010, 120, 283-290.	3.6	78
44	Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical and Applied Genetics, 2010, 121, 1141-1150.	3.6	40
45	Synthesis of a Brassica trigenomic allohexaploid (B. carinataÂ×ÂB. rapa) de novo and its stability in subsequent generations. Theoretical and Applied Genetics, 2010, 121, 1431-1440.	3.6	70
46	Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mappingThis article is one of a selection of papers from the conference "Exploiting Genome-wide Association in Oilseed Brassicas: a model for genetic improvement of major OECD crops for sustainable farmingâ€. Genome, 2010, 53, 908-916.	2.0	70
47	Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theoretical and Applied Genetics, 2008, 117, 1031-1040.	3.6	28