

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8747031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly and comparison of two closely related <i>Brassica napus</i> genomes. Plant Biotechnology Journal, 2017, 15, 1602-1610.	8.3	150
2	Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theoretical and Applied Genetics, 2010, 120, 283-290.	3.6	78
3	<i>De novo</i> genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of <i>Brassica napus</i> derived from interspecific hybridization with <i>Brassica rapa</i> . Plant Journal, 2011, 68, 212-224.	5.7	78
4	Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theoretical and Applied Genetics, 2017, 130, 1569-1585.	3.6	78
5	A Dynamic and Complex Network Regulates the Heterosis of Yield-Correlated Traits in Rapeseed (Brassica napus L.). PLoS ONE, 2011, 6, e21645.	2.5	72
6	Synthesis of a Brassica trigenomic allohexaploid (B. carinataÂ×ÂB. rapa) de novo and its stability in subsequent generations. Theoretical and Applied Genetics, 2010, 121, 1431-1440.	3.6	70
7	Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mappingThis article is one of a selection of papers from the conference "Exploiting Genome-wide Association in Oilseed Brassicas: a model for genetic improvement of major OECD crops for sustainable farmingâ€. Genome. 2010. 53. 908-916.	2.0	70
8	QTLs associated with agronomic traits in the Attila × CDC Go spring wheat population evaluated under conventional management. PLoS ONE, 2017, 12, e0171528.	2.5	68
9	A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics, 2013, 14, 277.	2.8	62
10	QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Scientific Reports, 2016, 6, 33113.	3.3	55
11	Genomeâ€wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal, 2019, 17, 1998-2010.	8.3	54
12	Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Annals of Botany, 2014, 114, 549-559.	2.9	52
13	Identification, evolution, and expression partitioning of miRNAs in allopolyploid <i>Brassica napus</i> . Journal of Experimental Botany, 2015, 66, 7241-7253.	4.8	44
14	G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresource Technology, 2016, 203, 325-333.	9.6	43
15	Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical and Applied Genetics, 2010, 121, 1141-1150.	3.6	40
16	Genetic changes in a novel breeding population of <i>Brassica napus</i> synthesized from hundreds of crosses between <i>B.Ârapa</i> and <i>B.Âcarinata</i> . Plant Biotechnology Journal, 2018, 16, 507-519.	8.3	39
17	Tracing the Transcriptomic Changes in Synthetic Trigenomic allohexaploids of Brassica Using an RNA-Seq Approach. PLoS ONE, 2013, 8, e68883.	2.5	39
18	Wholeâ€ŧranscriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (<i>Brassica napus</i> L.). Plant, Cell and Environment, 2018, 41, 1935-1947.	5.7	34

Jun Zou

#	Article	IF	CITATIONS
19	Exploring the gene pool of <i>Brassica napus</i> by genomicsâ€based approaches. Plant Biotechnology Journal, 2021, 19, 1693-1712.	8.3	34
20	A genetic linkage map of Brassica carinata constructed with a doubled haploid population. Theoretical and Applied Genetics, 2012, 125, 1113-1124.	3.6	33
21	Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics, 2016, 17, 18.	2.8	32
22	Genome structural evolution in Brassica crops. Nature Plants, 2021, 7, 757-765.	9.3	31
23	Mapping QTLs Controlling Agronomic Traits in the â€~Attila' × â€~CDC Go' Spring Wheat Population un Organic Management using 90K SNP Array. Crop Science, 2017, 57, 365-377.	der 1.8	30
24	Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data. PLoS ONE, 2016, 11, e0166624.	2.5	29
25	Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theoretical and Applied Genetics, 2008, 117, 1031-1040.	3.6	28
26	Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata. Theoretical and Applied Genetics, 2014, 127, 1593-1605.	3.6	28
27	Introgressing Subgenome Components from Brassica rapa and B. carinata to B. juncea for Broadening Its Genetic Base and Exploring Intersubgenomic Heterosis. Frontiers in Plant Science, 2016, 7, 1677.	3.6	28
28	Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids. Plant Molecular Biology, 2014, 85, 287-299.	3.9	23
29	Investigation of the Genetic Diversity and Quantitative Trait Loci Accounting for Important Agronomic and Seed Quality Traits in Brassica carinata. Frontiers in Plant Science, 2017, 8, 615.	3.6	23
30	Physical mapping of QTL associated with agronomic and end-use quality traits in spring wheat under conventional and organic management systems. Theoretical and Applied Genetics, 2021, 134, 3699-3719.	3.6	23
31	Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population. Molecular Breeding, 2017, 37, 1.	2.1	21
32	Integrative analysis of genomeâ€wide lnc <scp>RNA</scp> and <scp>mRNA</scp> expression in newly synthesized <i>Brassica</i> hexaploids. Ecology and Evolution, 2018, 8, 6034-6052.	1.9	20
33	Reconstituting the genome of a young allopolyploid crop, <i>Brassica napus,</i> with its related species. Plant Biotechnology Journal, 2019, 17, 1106-1118.	8.3	18
34	Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012, 184, 151-164.	1.2	17
35	Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization. Journal of Proteomics, 2015, 112, 274-284.	2.4	16
36	Breeding histories and selection criteria for oilseed rape in Europe and China identified by genome wide pedigree dissection. Scientific Reports, 2017, 7, 1916.	3.3	16

Jun Zou

#	Article	IF	CITATIONS
37	Hybrid Performance of an Immortalized F2 Rapeseed Population Is Driven by Additive, Dominance, and Epistatic Effects. Frontiers in Plant Science, 2017, 8, 815.	3.6	16
38	Challenges and prospects for a potential allohexaploid Brassica crop. Theoretical and Applied Genetics, 2021, 134, 2711-2726.	3.6	15
39	Physical Mapping of QTL in Four Spring Wheat Populations under Conventional and Organic Management Systems. I. Earliness. Plants, 2021, 10, 853.	3.5	13
40	AtMIF1 increases seed oil content by attenuating GL2 inhibition. New Phytologist, 2021, 229, 2152-2162.	7.3	10
41	Allele segregation analysis of F1 hybrids between independent Brassica allohexaploid lineages. Chromosoma, 2022, 131, 147-161.	2.2	10
42	Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae. BMC Plant Biology, 2015, 15, 149.	3.6	9
43	Genetic dissection of the shoot and root ionomes of Brassica napus grown with contrasting phosphate supplies. Annals of Botany, 2020, 126, 119-140.	2.9	8
44	Characterization and expression profiles of miRNAs in the triploid hybrids of Brassica napus and Brassica rapa. BMC Genomics, 2019, 20, 649.	2.8	7
45	Genome-wide prediction for hybrids between parents with distinguished difference on exotic introgressions in Brassica napus. Crop Journal, 2021, 9, 1169-1178.	5.2	6
46	A Two-Stage Method for Improving the Prediction Accuracy of Complex Traits by Incorporating Genotype by Environment Interactions inBrassica napus. Discrete Dynamics in Nature and Society, 2020, 2020, 1-12.	0.9	1
47	Comparative transcriptome and iTRAQ-based proteome analysis in mature leaves of Brassica carinata provides insights into the purple leaf color diversity. Journal of Horticultural Science and Biotechnology, 2021, 96, 444-455.	1.9	1