
Chong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8746890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term Survivals, Toxicities and the Role of Chemotherapy in Early-Stage Nasopharyngeal Carcinoma Patients Treated with Intensity-Modulated Radiation Therapy: A Retrospective Study with 15-Year Follow-up. Cancer Research and Treatment, 2022, 54, 118-129.	1.3	10
2	Deintensified Chemoradiotherapy for Pretreatment Epstein-Barr Virus DNA-Selected Low-Risk Locoregionally Advanced Nasopharyngeal Carcinoma: A Phase II Randomized Noninferiority Trial. Journal of Clinical Oncology, 2022, 40, 1163-1173.	0.8	25
3	Effect of Capecitabine Maintenance Therapy Plus Best Supportive Care vs Best Supportive Care Alone on Progression-Free Survival Among Patients With Newly Diagnosed Metastatic Nasopharyngeal Carcinoma Who Had Received Induction Chemotherapy. JAMA Oncology, 2022, 8, 553.	3.4	21
4	Effect of Induction Chemotherapy With Paclitaxel, Cisplatin, and Capecitabine vs Cisplatin and Fluorouracil on Failure-Free Survival for Patients With Stage IVA to IVB Nasopharyngeal Carcinoma. JAMA Oncology, 2022, 8, 706.	3.4	22
5	Individualized clinical target volume delineation and efficacy analysis in unilateral nasopharyngeal carcinoma treated with intensity-modulated radiotherapy (IMRT): 10-year summary. Journal of Cancer Research and Clinical Oncology, 2022, 148, 1931-1942.	1.2	6
6	Impact on xerostomia for patients with nasopharyngeal carcinoma treated with superficial parotid lobe-sparing intensity-modulated radiation therapy (SPLS-IMRT): A prospective phase II randomized controlled study Journal of Clinical Oncology, 2022, 40, 6059-6059.	0.8	0
7	Impact on xerostomia for nasopharyngeal carcinoma patients treated with superficial parotid lobe-sparing intensity-modulated radiation therapy (SPLS-IMRT): A prospective phase II randomized controlled study. Radiotherapy and Oncology, 2022, 175, 1-9.	0.3	7
8	Induction chemotherapy with lobaplatin and fluorouracil versus cisplatin and fluorouracil followed by chemoradiotherapy in patients with stage Ill–IVB nasopharyngeal carcinoma: an open-label, non-inferiority, randomised, controlled, phase 3 trial. Lancet Oncology, The, 2021, 22, 716-726.	5.1	42
9	A Randomized Controlled Trial Comparing Two Different Schedules for Cisplatin Treatment in Patients with Locoregionally Advanced Nasopharyngeal Cancer. Clinical Cancer Research, 2021, 27, 4186-4194.	3.2	15
10	Gemcitabine Plus Cisplatin Versus Fluorouracil Plus Cisplatin as First-Line Therapy for Recurrent or Metastatic Nasopharyngeal Carcinoma: Final Overall Survival Analysis of GEM20110714 Phase III Study. Journal of Clinical Oncology, 2021, 39, 3273-3282.	0.8	48
11	Multivariate NTCP Model of Hypothyroidism After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma. Frontiers in Oncology, 2021, 11, 714536.	1.3	4
12	Radiation-induced hypothyroidism in patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy with or without chemotherapy: Development of a nomogram based on the equivalent dose. Oral Oncology, 2021, 120, 105378.	0.8	8
13	CHAF1B induces radioresistance by promoting DNA damage repair in nasopharyngeal carcinoma. Biomedicine and Pharmacotherapy, 2020, 123, 109748.	2.5	12
14	Adding Concurrent Chemotherapy to Intensity-Modulated Radiotherapy Does Not Improve Treatment Outcomes for Stage II Nasopharyngeal Carcinoma: A Phase 2 Multicenter Clinical Trial. Frontiers in Oncology, 2020, 10, 1314.	1.3	22
15	Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Radiotherapy and Oncology, 2020, 150, 217-224.	0.3	49
16	A Prospective 10-Year Observational Study of Reduction of Radiation Therapy Clinical Target Volume and Dose in Early-Stage Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2020, 107, 672-682.	0.4	22
17	Clinical characteristics and prognostic value of preâ€retreatment plasma epsteinâ€barr virus DNA in locoregional recurrent nasopharyngeal carcinoma. Cancer Medicine, 2019, 8, 4633-4643.	1.3	9
18	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: long-term results of a phase III multicentre randomised controlled trial. European Journal of Cancer, 2019, 119, 87-96.	1.3	150

CHONG ZHAO

#	Article	IF	CITATIONS
19	Locoregional Control and Mild Late Toxicity After Reducing Target Volumes and Radiation Doses in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy (IC) Followed by Concurrent Chemoradiotherapy: 10-Year Results of a Phase 2 Study. International Journal of Radiation Oncology Biology Physics, 2019, 104, 836-844.	0.4	33
20	Prognostic model and optimal treatment for patients with stage IVc nasopharyngeal carcinoma at diagnosis. Scientific Reports, 2019, 9, 19272.	1.6	13
21	Long-term survival and late toxicities of elderly nasopharyngeal carcinoma (NPC) patients treated by high-total- and fractionated-dose simultaneous modulated accelerated radiotherapy with or without chemotherapy. Oral Oncology, 2019, 89, 40-47.	0.8	7
22	Concurrent chemoradiotherapy with nedaplatin versus cisplatin in stage II–IVB nasopharyngeal carcinoma: an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncology, The, 2018, 19, 461-473.	5.1	118
23	The value of shear wave elastography in predicting for undiagnosed small cervical lymph node metastasis in nasopharyngeal carcinoma: A preliminary study. European Journal of Radiology, 2018, 103, 19-24.	1.2	20
24	Interobserver variations in the delineation of target volumes and organs at risk and their impact on dose distribution in intensity-modulated radiation therapy for nasopharyngeal carcinoma. Oral Oncology, 2018, 82, 1-7.	0.8	31
25	Patterns of Failure and Survival Trends Of 720 Patients with Stage I Nasopharyngeal Carcinoma Diagnosed from 1990-2012: A Large-scale Retrospective Cohort Study. Journal of Cancer, 2018, 9, 1308-1317.	1.2	11
26	Pretreatment quality of life as a predictor of survival for patients with nasopharyngeal carcinoma treated with IMRT. BMC Cancer, 2018, 18, 114.	1.1	13
27	Ultrasoundâ€guided fine needle aspiration of retropharyngeal lymph nodes after radiotherapy for nasopharyngeal carcinoma: a novel technique for accurate diagnosis. Cancer Communications, 2018, 38, 1-8.	3.7	15
28	The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients. Cancer Research and Treatment, 2018, 50, 19-29.	1.3	56
29	Combination of Tumor Volume and Epstein-Barr Virus DNA Improved Prognostic Stratification of Stage II Nasopharyngeal Carcinoma in the Intensity Modulated Radiotherapy Era: A Large-Scale Cohort Study. Cancer Research and Treatment, 2018, 50, 861-871.	1.3	38
30	Induction Chemotherapy Plus Concurrent Chemoradiotherapy Versus Concurrent Chemoradiotherapy Alone in Locoregionally Advanced Nasopharyngeal Carcinoma in Children and Adolescents: A Matched Cohort Analysis. Cancer Research and Treatment, 2018, 50, 1304-1315.	1.3	19
31	Comparison between lobaplatin and cisplatin plus 5-fluorouracil combined with intensity-modulated radiotherapy for locoregionally advanced nasopharyngeal carcinoma: A multicenter randomized phase III clinical trial Journal of Clinical Oncology, 2018, 36, 6029-6029.	0.8	0
32	Effect of neoadjuvant chemotherapy followed by concurrent chemoradiotherapy on nutritional status in locoregionally advanced nasopharyngeal carcinoma patients: A prospective observational study Journal of Clinical Oncology, 2018, 36, e18002-e18002.	0.8	0
33	Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase III multicentre randomised controlled trial. European Journal of Cancer, 2017, 75, 14-23.	1.3	226
34	PD-L1 predicts poor prognosis for nasopharyngeal carcinoma irrespective of PD-1 and EBV-DNA load. Scientific Reports, 2017, 7, 43627.	1.6	52
35	Combining cetuximab with chemoradiotherapy in patients with locally advanced nasopharyngeal carcinoma: A propensity score analysis. Oral Oncology, 2017, 67, 167-174.	0.8	25
36	The value of the Prognostic Nutritional Index (PNI) in predicting outcomes and guiding the treatment strategy of nasopharyngeal carcinoma (NPC) patients receiving intensity-modulated radiotherapy (IMRT) with or without chemotherapy. Journal of Cancer Research and Clinical Oncology, 2017, 143, 1263-1273.	1.2	62

CHONG ZHAO

#	Article	IF	CITATIONS
37	Advanced-Stage Nasopharyngeal Carcinoma: Restaging System after Neoadjuvant Chemotherapy on the Basis of MR Imaging Determines Survival. Radiology, 2017, 282, 171-181.	3.6	11
38	S100A6 promotes cell proliferation in human nasopharyngeal carcinoma via the p38/MAPK signaling pathway. Molecular Carcinogenesis, 2017, 56, 972-984.	1.3	29
39	The challenge in treating locally recurrent T3-4 nasopharyngeal carcinoma: the survival benefit and severe late toxicities of re-irradiation with intensity-modulated radiotherapy. Oncotarget, 2017, 8, 43450-43457.	0.8	47
40	Concurrent chemoradiotherapy with or without cetuximab for stage II to IVb nasopharyngeal carcinoma: a case–control study. BMC Cancer, 2017, 17, 567.	1.1	29
41	Advantage of PET/CT in Target Delineation of MRI-negative Cervical Lymph Nodes In Intensity-Modulated Radiation Therapy Planning for Nasopharyngeal Carcinoma. Journal of Cancer, 2017, 8, 4117-4123.	1.2	10
42	Nimotuzumab combined with cisplatin plus fluorouracil chemotherapy in patients with metastatic nasopharyngeal carcinoma after radical radiotherapy: A multicentre, open-label, phase II clinical trial Journal of Clinical Oncology, 2017, 35, 6028-6028.	0.8	1
43	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in stage III-IVb nasopharyngeal carcinoma patients with Epstein-Barr virus DNA ≥4000 copies/ml: a matched study. Oncotarget, 2016, 7, 29739-29748.	0.8	15
44	Long-term survival and late complications in intensity-modulated radiotherapy of locally recurrent T1 to T2 nasopharyngeal carcinoma. Head and Neck, 2016, 38, 225-231.	0.9	39
45	Development and validation of a nomogram for predicting the survival of patients with non-metastatic nasopharyngeal carcinoma after curative treatment. Chinese Journal of Cancer, 2016, 35, 98.	4.9	32
46	Gemcitabine plus cisplatin versus fluorouracil plus cisplatin in recurrent or metastatic nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase 3 trial. Lancet, The, 2016, 388, 1883-1892.	6.3	406
47	Prognostic efficacy of combining tumor volume with Epstein-Barr virus DNA in patients treated with intensity-modulated radiotherapy for nasopharyngeal carcinoma. Oral Oncology, 2016, 60, 18-24.	0.8	35
48	With or without reirradiation in advanced local recurrent nasopharyngeal carcinoma: a case–control study. BMC Cancer, 2016, 16, 774.	1.1	17
49	Neoadjuvant chemotherapy plus intensity-modulated radiotherapy versus concurrent chemoradiotherapy plus adjuvant chemotherapy for the treatment of locoregionally advanced nasopharyngeal carcinoma: a retrospective controlled study. Chinese Journal of Cancer, 2016, 35, 2.	4.9	62
50	Long-term outcomes of a phase II randomized controlled trial comparing intensity-modulated radiotherapy with or without weekly cisplatin for the treatment of locally recurrent nasopharyngeal carcinoma. Chinese Journal of Cancer, 2016, 35, 20.	4.9	50
51	Establishment and Validation of Prognostic Nomograms for Endemic Nasopharyngeal Carcinoma. Journal of the National Cancer Institute, 2016, 108, djv291.	3.0	281
52	Plasma Epstein-Barr viral DNA complements TNM classification of nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy. Oncotarget, 2016, 7, 6221-6230.	0.8	37
53	Prognostic effect of pregnancy on young female patients with nasopharyngeal carcinoma: results from a matched cohort analysis. Oncotarget, 2016, 7, 21913-21921.	0.8	4
54	Sensorineural Hearing Loss after Combined Intensity Modulated Radiation Therapy and Cisplatin-Based Chemotherapy for Nasopharyngeal Carcinoma. Translational Oncology, 2015, 8, 456-462.	1.7	27

CHONG ZHAO

#	Article	IF	CITATIONS
55	Impact of primary tumor volume and location on the prognosis of patients with locally recurrent nasopharyngeal carcinoma. Chinese Journal of Cancer, 2015, 34, 247-53.	4.9	32
56	The impact of the cumulative dose of cisplatin during concurrent chemoradiotherapy on the clinical outcomes of patients with advanced-stage nasopharyngeal carcinoma in an era of intensity-modulated radiotherapy. BMC Cancer, 2015, 15, 977.	1.1	21
57	Distant metastasis risk and patterns of nasopharyngeal carcinoma in the era of IMRT: long-term results and benefits of chemotherapy. Oncotarget, 2015, 6, 24511-24521.	0.8	72
58	The efficacy and safety of Endostar combined with chemoradiotherapy for patients with advanced, locally recurrent nasopharyngeal carcinoma. Oncotarget, 2015, 6, 33926-33934.	0.8	29
59	High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study. International Journal of Radiation Oncology Biology Physics, 2015, 91, 325-336.	0.4	41
60	Salvage endoscopic nasopharyngectomy is superior to intensity-modulated radiation therapy for local recurrence of selected T1–T3 nasopharyngeal carcinoma – A case-matched comparison. Radiotherapy and Oncology, 2015, 115, 399-406.	0.3	110
61	Positron emission tomography–computed tomography before treatment is highly prognostic of distant metastasis in nasopharyngeal carcinoma patients after intensity-modulated radiotherapy treatment: A prospective study with long-term follow-up. Oral Oncology, 2015, 51, 363-369.	0.8	24
62	Analysis of late toxicity in nasopharyngeal carcinoma patients treated with intensity modulated radiation therapy. Radiation Oncology, 2015, 10, 17.	1.2	75
63	The Prognostic Value of Plasma Epstein-Barr Viral DNA and Tumor Response to Neoadjuvant Chemotherapy in Advanced-Stage Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2015, 93, 862-869.	0.4	110
64	Risk factors and prediction-score model for distant metastasis in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy. Tumor Biology, 2015, 36, 8349-8357.	0.8	25
65	Activating enhancer-binding protein-2α induces cyclooxygenase-2 expression and promotes nasopharyngeal carcinoma growth. Oncotarget, 2015, 6, 5005-5021.	0.8	13
66	Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2015, 6, 38296-38307.	0.8	10
67	Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: An analysis of survival and treatment toxicities. Radiotherapy and Oncology, 2014, 110, 398-403.	0.3	451
68	Prospective Study of Tailoring Whole-Body Dual-Modality [¹⁸ F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography With Plasma Epstein-Barr Virus DNA for Detecting Distant Metastasis in Endemic Nasopharyngeal Carcinoma at Initial Staging. Journal of Clinical Oncology, 2013, 31, 2861-2869.	0.8	171
69	Local control, survival, and late toxicities of locally advanced nasopharyngeal carcinoma treated by simultaneous modulated accelerated radiotherapy combined with cisplatin concurrent chemotherapy. Cancer, 2011, 117, 1874-1883.	2.0	240
70	Treatment outcomes for different subgroups of nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy. Chinese Journal of Cancer, 2011, 30, 565-573.	4.9	66