Cuong Pham-Huu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8746640/publications.pdf

Version: 2024-02-01

202 papers 9,345 citations

28242 55 h-index 85 g-index

205 all docs

205 docs citations

205 times ranked 9394 citing authors

#	Article	IF	CITATIONS
1	Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Applied Catalysis A: General, 2005, 288, 203-210.	2.2	258
2	The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential. Journal of Catalysis, 2001, 200, 400-410.	3.1	225
3	Silicon Carbide: A Novel Catalyst Support for Heterogeneous Catalysis. Cattech, 2001, 5, 226-246.	2.6	219
4	Physical characterization of molybdenum oxycarbide catalyst; TEM, XRD and XPS. Catalysis Today, 1995, 23, 251-267.	2.2	202
5	Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Applied Catalysis A: General, 2010, 380, 72-80.	2.2	196
6	Electrical Transport Measured in Atomic Carbon Chains. Nano Letters, 2013, 13, 3487-3493.	4 . 5	192
7	Selective Deposition of Metal Nanoparticles Inside or Outside Multiwalled Carbon Nanotubes. ACS Nano, 2009, 3, 2081-2089.	7.3	175
8	Carbon nanofiber supported palladium catalyst for liquid-phase reactions. Journal of Molecular Catalysis A, 2001, 170, 155-163.	4.8	168
9	Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Metalâ€Free Catalyst for Selective Oxidation. ChemSusChem, 2012, 5, 102-108.	3.6	162
10	Methane dehydro-aromatization on Mo/ZSM-5: About the hidden role of Brønsted acid sites. Applied Catalysis A: General, 2008, 336, 79-88.	2.2	151
11	Graphene Growth by a Metal-Catalyzed Solid-State Transformation of Amorphous Carbon. ACS Nano, 2011, 5, 1529-1534.	7.3	151
12	Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer–Tropsch synthesis catalyst. Applied Catalysis A: General, 2011, 397, 62-72.	2.2	140
13	Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catalysis Today, 2002, 76, 11-32.	2.2	138
14	Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon, 2003, 41, 2131-2139.	5.4	123
15	Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Research, 2010, 3, 126-137.	5.8	123
16	Isomerization of n-Heptane on an Oxygen-Modified Molybdenum Carbide Catalyst. Industrial & Description of Research, 1994, 33, 1657-1664.	1.8	122
17	Induction Heating: An Enabling Technology for the Heat Management in Catalytic Processes. ACS Catalysis, 2019, 9, 7921-7935.	5.5	120
18	Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Applied Catalysis A: General, 2003, 254, 345-363.	2.2	117

#	Article	IF	CITATIONS
19	New catalytic phenomena on nanostructured (fibers and tubes) catalysts. Journal of Catalysis, 2003, 216, 333-342.	3.1	115
20	Chemically Functionalized Carbon Nanotubes with Pyridine Groups as Easily Tunable N-Decorated Nanomaterials for the Oxygen Reduction Reaction in Alkaline Medium. Chemistry of Materials, 2014, 26, 3460-3470.	3.2	107
21	Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes. Physical Chemistry Chemical Physics, 2002, 4, 514-521.	1.3	106
22	Highâ€Density and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie - International Edition, 2020, 59, 21613-21619.	7.2	103
23	Quantitative Measurement of the Brönsted Acid Sites in Solid Acids: Toward a Single-Site Design of Mo-Modified ZSM-5 Zeolite. Journal of Physical Chemistry B, 2006, 110, 10390-10395.	1.2	100
24	Microstructure and Characterization of a Highly Selective Catalyst for the Isomerization of Alkanes: A Molybdenum Oxycarbide. Journal of Catalysis, 2000, 190, 92-103.	3.1	99
25	3D Electron Microscopy Study of Metal Particles Inside Multiwalled Carbon Nanotubes. Nano Letters, 2007, 7, 1898-1907.	4.5	99
26	C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition. Applied Catalysis A: General, 2005, 279, 89-97.	2.2	98
27	Design of Covalently Functionalized Carbon Nanotubes Filled with Metal Oxide Nanoparticles for Imaging, Therapy, and Magnetic Manipulation. ACS Nano, 2014, 8, 11290-11304.	7.3	96
28	N-doped carbon nanotubes for liquid-phase CC bond hydrogenation. Catalysis Today, 2008, 138, 62-68.	2.2	92
29	Titania-Decorated Silicon Carbide-Containing Cobalt Catalyst for Fischer–Tropsch Synthesis. ACS Catalysis, 2013, 3, 393-404.	5.5	92
30	Silicon carbide foam as a porous support platform for catalytic applications. New Journal of Chemistry, 2016, 40, 4285-4299.	1.4	92
31	Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint. Applied Catalysis A: General, 2001, 217, 205-217.	2.2	87
32	3D Analysis of the Morphology and Spatial Distribution of Nitrogen in Nitrogen-Doped Carbon Nanotubes by Energy-Filtered Transmission Electron Microscopy Tomography. Journal of the American Chemical Society, 2012, 134, 9672-9680.	6.6	87
33	About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst. Journal of Catalysis, 2006, 240, 194-202.	3.1	86
34	Fischer–Tropsch Reaction on a Thermally Conductive and Reusable Silicon Carbide Support. ChemSusChem, 2014, 7, 1218-1239.	3.6	82
35	High-Yield Butane to Maleic Anhydride Direct Oxidation on Vanadyl Pyrophosphate Supported on Heat-Conductive Materials: β-SiC, Si3N4, and BN. Journal of Catalysis, 2001, 203, 495-508.	3.1	81
36	Effect of structure and thermal properties of a Fischer–Tropsch catalyst in a fixed bed. Catalysis Today, 2009, 147, S305-S312.	2.2	79

3

#	Article	IF	CITATIONS
37	Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction. Journal of Catalysis, 2009, 265, 1-7.	3.1	75
38	Using Ordered Carbon Nanomaterials for Shedding Light on the Mechanism of the Cathodic Oxygen Reduction Reaction. Langmuir, 2011, 27, 9018-9027.	1.6	73
39	N-Doped Food-Grade-Derived 3D Mesoporous Foams as Metal-Free Systems for Catalysis. ACS Catalysis, 2016, 6, 1408-1419.	5.5	73
40	Unraveling Surface Basicity and Bulk Morphology Relationship on Covalent Triazine Frameworks with Unique Catalytic and Gas Adsorption Properties. Advanced Functional Materials, 2017, 27, 1605672.	7.8	72
41	Experimental measurements and multiphase flow models in solid SiC foam beds. AICHE Journal, 2008, 54, 2823-2832.	1.8	69
42	Synthesis of porous carbon nanotubes foam composites with a high accessible surface area and tunable porosity. Journal of Materials Chemistry A, 2013, 1, 9508.	5.2	69
43	Direct oxidation of H2S into S. New catalysts and processes based on SiC support. Catalysis Today, 1999, 53, 535-542.	2.2	68
44	Autoassembly of Nanofibrous Zeolite Crystals via Silicon Carbide Substrate Self-Transformation. Journal of the American Chemical Society, 2007, 129, 3383-3391.	6.6	66
45	A few-layer graphene–graphene oxide composite containing nanodiamonds as metal-free catalysts. Journal of Materials Chemistry A, 2014, 2, 11349-11357.	5.2	63
46	High surface area silicon carbide doped with zirconium for use as catalyst support. Preparation, characterization and catalytic application. Applied Catalysis A: General, 1999, 180, 385-397.	2.2	62
47	Defect enriched N-doped carbon nanoflakes as robust carbocatalysts for H ₂ S selective oxidation. Journal of Materials Chemistry A, 2020, 8, 8892-8902.	5.2	62
48	Synthesis and characterisation of carbon nanofibres with macroscopic shaping formed by catalytic decomposition of C2H6/H2 over nickel catalyst. Applied Catalysis A: General, 2004, 274, 1-8.	2.2	61
49	Aziridine-Functionalized Multiwalled Carbon Nanotubes: Robust and Versatile Catalysts for the Oxygen Reduction Reaction and Knoevenagel Condensation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30099-30106.	4.0	61
50	Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier?. Chemical Reviews, 2021, 121, 10559-10665.	23.0	61
51	Synthesis and Characterization of High Specific Surface Area Vanadium Carbide; Application to Catalytic Oxidation. Journal of Catalysis, 1997, 169, 33-44.	3.1	59
52	Macroscopically shaped monolith of nanodiamonds @ nitrogen-enriched mesoporous carbon decorated SiC as a superior metal-free catalyst for the styrene production. Applied Catalysis B: Environmental, 2017, 200, 343-350.	10.8	59
53	Preparation and characterization of SiC microtubes. Applied Catalysis A: General, 1999, 187, 255-268.	2.2	58
54	Carbon nanotubes containing oxygenated decorating defects as metal-free catalyst for selective oxidation of H2S. Applied Catalysis B: Environmental, 2016, 191, 29-41.	10.8	58

#	Article	IF	CITATIONS
55	Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Applied Catalysis A: General, 2009, 371, 22-30.	2.2	57
56	Identify Zr Promotion Effects in Atomic Scale for Co-Based Catalysts in Fischer–Tropsch Synthesis. ACS Catalysis, 2020, 10, 7894-7906.	5.5	57
57	Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials. Topics in Catalysis, 2006, 40, 49-63.	1.3	55
58	High performance structured platelet milli-reactor filled with supported cobalt open cell SiC foam catalyst for the Fischer–Tropsch synthesis. Chemical Engineering Journal, 2013, 222, 265-273.	6.6	54
59	Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications. Small, 2015, 11, 3485-3493.	5.2	54
60	Macroscopic nanodiamonds/ \hat{l}^2 -SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499, 217-226.	2.2	53
61	Nitrogen-doped carbon nanotubes decorated silicon carbide as a metal-free catalyst for partial oxidation of H2S. Applied Catalysis A: General, 2014, 482, 397-406.	2.2	52
62	Microstructural Investigation of Magnetic CoFe2O4Nanowires inside Carbon Nanotubes by Electron Tomography. Nano Letters, 2008, 8, 1033-1040.	4.5	50
63	High-Density Monodispersed Cobalt Nanoparticles Filled into Multiwalled Carbon Nanotubes. Chemistry of Materials, 2012, 24, 1549-1551.	3.2	50
64	Selective oxidation of H2S in Claus tail-gas over SiC supported NiS2 catalyst. Catalysis Today, 2000, 61, 157-163.	2.2	49
65	Oneâ€Pot Synthesis of a Nitrogenâ€Doped Carbon Composite by Electrospinning as a Metalâ€Free Catalyst for Oxidation of H ₂ S to Sulfur. ChemCatChem, 2015, 7, 2957-2964.	1.8	48
66	Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. Journal of Materials Chemistry A, 2017, 5, 2151-2162.	5.2	48
67	On the Evolution of Pt Nanoparticles on Few-Layer Graphene Supports in the High-Temperature Range. Journal of Physical Chemistry C, 2012, 116, 9274-9282.	1.5	47
68	Few layer graphene decorated with homogeneous magnetic Fe3O4 nanoparticles with tunable covering densities. Journal of Materials Chemistry A, 2014, 2, 2690.	5.2	45
69	Nanodiamond decorated few-layer graphene composite as an efficient metal-free dehydrogenation catalyst for styrene production. Catalysis Today, 2015, 249, 167-175.	2.2	45
70	Effect of the reaction temperature and hydrocarbon partial pressure on the activity of carbon-modified MoO3 for n-hexane isomerization. Applied Catalysis A: General, 1997, 149, 151-180.	2.2	44
71	A highly N-doped carbon phase "dressing―of macroscopic supports for catalytic applications. Chemical Communications, 2015, 51, 14393-14396.	2.2	43
72	N-Doped 3D Mesoporous Carbon/Carbon Nanotubes Monolithic Catalyst for H ₂ S Selective Oxidation. ACS Applied Nano Materials, 2019, 2, 3780-3792.	2.4	43

#	Article	lF	CITATIONS
73	Hydrazine decomposition over iridium supported on carbon nanofibers composite for space applications: near actual flight conditions tests. Applied Catalysis A: General, 2005, 279, 35-40.	2.2	42
74	Structured silica reactor with aligned carbon nanotubes as catalyst support for liquid-phase reaction. Journal of Molecular Catalysis A, 2007, 267, 92-97.	4.8	42
75	3D solid carbon foam-based photocatalytic materials for vapor phase flow-through structured photoreactors. Applied Catalysis A: General, 2010, 382, 122-130.	2.2	42
76	Nickel Nanoparticles Decorated Nitrogen-Doped Carbon Nanotubes (Ni/N-CNT); a Robust Catalyst for the Efficient and Selective CO ₂ Methanation. ACS Applied Energy Materials, 2019, 2, 1111-1120.	2.5	42
77	Catalysis with carbides. Current Opinion in Solid State and Materials Science, 1996, 1, 96-100.	5.6	41
78	Part I. n-Butane dehydrogenation on unsupported carbon modified MoO3 (MoOxCy): effect of steam on the catalyst stability. Applied Catalysis A: General, 1999, 181, 157-170.	2.2	41
79	Fe2O3 \hat{I}^2 -SiC: A new high efficient catalyst for the selective oxidation of H2S into elemental sulfur. Catalysis Today, 2009, 141, 397-402.	2.2	41
80	UV-A photocatalytic treatment of Legionella pneumophila bacteria contaminated airflows through three-dimensional solid foam structured photocatalytic reactors. Journal of Hazardous Materials, 2010, 175, 372-381.	6.5	41
81	Low temperature use of SiC-supported NiS2-based catalysts for selective H2S oxidation. Applied Catalysis A: General, 2002, 234, 191-205.	2.2	40
82	Beta zeolite supported on a β-SiC foam monolith: A diffusionless catalyst for fixed-bed Friedel–Crafts reactions. Journal of Molecular Catalysis A, 2006, 248, 113-120.	4.8	40
83	Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe ₃ O ₄ nanostructures grafted onto graphene for supercapacitor application. Journal of Materials Chemistry A, 2015, 3, 22877-22885.	5.2	40
84	Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis. Catalysis Today, 2018, 301, 2-10.	2.2	40
85	1D SiC decoration of SiC macroscopic shapes for filtration devices. Journal of Materials Chemistry, 2008, 18, 4654.	6.7	39
86	Few-layer graphene supporting palladium nanoparticles with a fully accessible effective surface for liquid-phase hydrogenation reaction. Catalysis Today, 2012, 189, 77-82.	2.2	38
87	Molybdenum oxycarbide isomerization catalysts for cleaner fuel production. Catalysis Today, 1996, 27, 145-150.	2.2	37
88	Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer–Tropsch synthesis. Journal of Catalysis, 2014, 318, 179-192.	3.1	37
89	Oxidative dehydrogenation of 9,10-dihydroanthracene using multi-walled carbon nanotubes. Journal of Molecular Catalysis A, 2009, 302, 119-123.	4.8	36
90	Biosourced Foamâ€Like Activated Carbon Materials as Highâ€Performance Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700123.	2.7	36

#	Article	IF	CITATIONS
91	Pressure drop measurements and hydrodynamic model description of SiC foam composites decorated with SiC nanofiber. Catalysis Today, 2009, 141, 403-408.	2.2	35
92	In situ TPO, TPD and XRD characterisation of a molybdenum oxycarbohydride catalyst for n-butane isomerisation. Applied Catalysis A: General, 2001, 215, 175-184.	2.2	33
93	Direct Observation of Stacking Faults and Pore Connections in Ordered Cage-Type Mesoporous Silica FDU-12 by Electron Tomography. Journal of the American Chemical Society, 2008, 130, 16800-16806.	6.6	33
94	Influence of the oxygen pretreatment on the CO2 reforming of methane on Ni/ \hat{l}^2 -SiC catalyst. Catalysis Today, 2009, 141, 393-396.	2.2	33
95	High temperature stability of platinum nanoparticles on few-layer graphene investigated by In Situ high resolution transmission electron microscopy. Nano Research, 2011, 4, 511-521.	5 . 8	33
96	Nitrogen-doped carbon nanotube spheres as metal-free catalysts for the partial oxidation of H2S. Comptes Rendus Chimie, 2016, 19, 1303-1309.	0.2	33
97	Analytical electron tomography mapping of the SiC pore oxidation at the nanoscale. Nanoscale, 2010, 2, 2668.	2.8	32
98	Silicon carbide foam decorated with carbon nanofibers as catalytic stirrer in liquid-phase hydrogenation reactions. Applied Catalysis A: General, 2014, 469, 81-88.	2.2	32
99	Cotton Fabrics Coated with Few-Layer Graphene as Highly Responsive Surface Heaters and Integrated Lightweight Electronic-Textile Circuits. ACS Applied Nano Materials, 2020, 3, 9771-9783.	2.4	32
100	Chemical functionalization of N-doped carbon nanotubes: a powerful approach to cast light on the electrochemical role of specific N-functionalities in the oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 6226-6236.	2.1	31
101	Structure-performance relationship of nanodiamonds @ nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene. Catalysis Today, 2018, 301, 38-47.	2.2	31
102	How to teach an old dog new (electrochemical) tricks: aziridine-functionalized CNTs as efficient electrocatalysts for the selective $CO < sub > 2 < / sub > reduction$ to CO . Journal of Materials Chemistry A, 2018, 6, 16382-16389.	5. 2	31
103	Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst. Chinese Journal of Catalysis, 2014, 35, 906-913.	6.9	30
104	Colloid Approach to the Sustainable Top-Down Synthesis of Layered Materials. ACS Omega, 2017, 2, 8610-8617.	1.6	30
105	Heteroatom-Doped Monolithic Carbocatalysts with Improved Sulfur Selectivity and Impurity Tolerance for H ₂ S Selective Oxidation. ACS Catalysis, 2021, 11, 8591-8604.	5 . 5	30
106	Comparative Effect of Organosulfur Compounds on Catalysts for then-Heptane Isomerization Reaction at Medium Pressure: Mo2C-Oxygen-Modified, MoO3-Carbon-Modified, Pt/γ-Al2O3, and Pt/β-Zeolite Catalysts. Industrial & Diplication Chemistry Research, 1996, 35, 672-682.	1.8	29
107	Growth of Singleâ€Walled Carbon Nanotubes from Sharp Metal Tips. Small, 2009, 5, 2710-2715.	5.2	29
108	Macroscopic shaping of carbon nanotubes with high specific surface area and full accessibility. Materials Letters, 2012, 79, 128-131.	1.3	29

#	Article	IF	CITATIONS
109	Surface Engineering of Chemically Exfoliated MoS ₂ in a "Click― How To Generate Versatile Multifunctional Transition Metal Dichalcogenides-Based Platforms. Chemistry of Materials, 2018, 30, 8257-8269.	3.2	29
110	CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 2020, 357, 214-220.	2.2	29
111	A high-performance Pt/\hat{l}^2 -SiC catalyst for catalytic combustion of model carbon particles (CPs). Applied Catalysis A: General, 2004, 266, 21-27.	2.2	28
112	Carbon nanofibers: a versatile catalytic support. Materials Research, 2008, 11, 353-357.	0.6	28
113	BETA zeolite nanowire synthesis under non-hydrothermal conditions using carbon nanotubes as template. Carbon, 2004, 42, 1941-1946.	5.4	27
114	Carbon nanotubes as a template for mild synthesis of magnetic CoFe2O4 nanowires. Carbon, 2004, 42, 1395-1399.	5.4	27
115	Acylation of anisole by acetic anhydride catalysed by BETA zeolite supported on pre-shaped silicon carbide. Catalysis Communications, 2006, 7, 768-772.	1.6	27
116	Carbon nanotube channels selectively filled with monodispersed Fe3â^'xO4 nanoparticles. Journal of Materials Chemistry A, 2013, 1, 13853.	5.2	27
117	Microwave-promoted hydrogenation and alkynylation reactions with palladium-loaded multi-walled carbon nanotubes. New Journal of Chemistry, 2008, 32, 920.	1.4	26
118	Selectiven-Butane Isomerization over High Specific Surface Area MoO3-Carbon-Modified Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 4166-4175.	1.8	25
119	Molybdenum oxycarbide hydrocarbon isomerization catalysts: cleaner fuels for the future. Catalysis Today, 1997, 35, 51-57.	2.2	25
120	Axial Dispersion Based on the Residence Time Distribution Curves in a Millireactor Filled with \hat{l}^2 -SiC Foam Catalyst. Industrial & Engineering Chemistry Research, 2012, 51, 15011-15017.	1.8	25
121	Mechanical enhancement of C/C composites via the formation of a machinable carbon nanofiber interphase. Carbon, 2008, 46, 76-83.	5.4	24
122	Carbon nanotubes decorated \hat{l}_{\pm} -Al2O3 containing cobalt nanoparticles for Fischer-Tropsch reaction. Journal of Energy Chemistry, 2013, 22, 279-289.	7.1	24
123	Hierarchical carbon nanofibers/graphene composite containing nanodiamonds for direct dehydrogenation of ethylbenzene. Carbon, 2016, 96, 1060-1069.	5.4	24
124	Lightweight, few-layer graphene composites with improved electro-thermal properties as efficient heating devices for de-icing applications. Carbon, 2021, 182, 655-668.	5.4	24
125	Hierarchically structured reactors containing nanocarbons for intensification of chemical reactions. Journal of Materials Chemistry A, 2017, 5, 22408-22441.	5.2	23
126	On the role of hydrogen during the reduction–carburation of MoO3 into molybdenum oxycarbide. Journal of Molecular Catalysis A, 2000, 162, 317-334.	4.8	22

#	Article	IF	Citations
127	Selective Deposition of Palladium Nanoparticles inside the Bimodal Porosity of \hat{l}^2 -SiC Investigated by Electron Tomography. Journal of Physical Chemistry C, 2009, 113, 17711-17719.	1.5	22
128	A predictive model based on tortuosity for pressure drop estimation in †slim†and †fat†foams. Chemic Engineering Science, 2011, 66, 4771-4779.	al 1.9	22
129	Effect of nitriding/nanostructuration of few layer graphene supported iron-based particles; catalyst in graphene etching and carbon nanofilament growth. Physical Chemistry Chemical Physics, 2014, 16, 15988.	1.3	22
130	3D Study of the Morphology and Dynamics of Zeolite Nucleation. Chemistry - A European Journal, 2015, 21, 18316-18327.	1.7	22
131	Influence of the reaction temperature on the oxygen reduction reaction on nitrogen-doped carbon nanotube catalysts. Catalysis Today, 2015, 249, 236-243.	2.2	22
132	Highly Nickelâ€Loaded γâ€Alumina Composites for a Radiofrequencyâ€Heated, Lowâ€Temperature CO ₂ Methanation Scheme. ChemSusChem, 2020, 13, 5468-5479.	3.6	22
133	Radio-frequency induction heating powered low-temperature catalytic CO2 conversion via bi-reforming of methane. Chemical Engineering Journal, 2022, 430, 132934.	6.6	22
134	Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template. Catalysis Today, 2009, 145, 76-84.	2.2	21
135	Macroscopic graphite felt containing palladium catalyst for liquid-phase hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2019, 244, 128-139.	10.8	21
136	Catalytic growth of silicon carbide composite with nanoscopic properties and enhanced oxidative resistance as catalyst support. Applied Catalysis A: General, 2010, 385, 52-61.	2.2	20
137	The Coulombic Nature of Active Nitrogen Sites in N-Doped Nanodiamond Revealed In Situ by Ionic Surfactants. ACS Catalysis, 2017, 7, 3295-3300.	5.5	20
138	An Open Gate for High-Density Metal Ions in N-Doped Carbon Networks: Powering Fe–N–C Catalyst Efficiency in the Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 8915-8928.	5.5	20
139	Highâ€Density and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie, 2020, 132, 21797-21803.	1.6	19
140	3D-TEM investigation of the nanostructure of a \hat{l} -Al ₂ O ₃ catalyst support decorated with Pd nanoparticles. Nanoscale, 2012, 4, 946-954.	2.8	18
141	Formation and characterization of carbon–metal nano-contacts. Carbon, 2014, 77, 906-911.	5.4	18
142	Bucky paper with improved mechanical stability made from vertically aligned carbon nanotubes for desulfurization process. Applied Catalysis A: General, 2011, 400, 230-237.	2.2	17
143	Nanodiamonds @ N, P co-modified mesoporous carbon supported on macroscopic SiC foam for oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2020, 357, 231-239.	2.2	17
144	Foldable flexible electronics based on few-layer graphene coated on paper composites. Carbon, 2020, 167, 169-180.	5.4	17

#	Article	IF	CITATIONS
145	High temperature H2Sremoval over high specific surface area [beta]-SiC supported iron oxide sorbent Part 1Preparation and characterization. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 435-442.	1.7	16
146	Gaseous Nitric Acid Activated Graphite Felts as Hierarchical Metal-Free Catalyst for Selective Oxidation of H2S. Catalysts, 2018, 8, 145.	1.6	16
147	Enhancing oxygen activation on high surface area Pd-SnO2 solid solution with isolated metal site catalysts for catalytic CH4 combustion. Applied Surface Science, 2021, 564, 150368.	3.1	16
148	Green catalysis for production of chemicals and CO-free hydrogen. Catalysis Communications, 2007, 8, 1787-1792.	1.6	15
149	A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles. Nanoscale, 2013, 5, 9073.	2.8	15
150	A nitrogen-doped carbon-coated silicon carbide as a robust and highly efficient metal-free catalyst for sour gas desulfurization in the presence of aromatics as contaminants. Catalysis Science and Technology, 2020, 10, 5487-5500.	2.1	15
151	Surface Oxygenate Species on TiC Reinforce Cobalt-Catalyzed Fischer–Tropsch Synthesis. ACS Catalysis, 2021, 11, 8087-8096.	5.5	15
152	New catalysts based on silicon carbide support for improvements in the sulfur recovery: new silicon carbide nanotubes as catalyst support for the trickle-bed H2S oxidation. Journal of the Brazilian Chemical Society, 2005, 16, 514-519.	0.6	14
153	Catalytic synthesis of a high aspect ratio carbon nanotubes bridging carbon felt composite with improved electrical conductivity and effective surface area. Applied Catalysis A: General, 2011, 392, 238-247.	2.2	14
154	Synergy between Nickel Nanoparticles and N-Enriched Carbon Nanotubes Enhances Alkaline Hydrogen Oxidation and Evolution Activity. ACS Applied Nano Materials, 2021, 4, 3586-3596.	2.4	14
155	Comparison of the Effects of Nitrogen Poisoning on Molybdenum Oxycarbide and Pt/\hat{l}^2 -Zeolite Catalysts in the Isomerization ofn-Heptane. Industrial & Engineering Chemistry Research, 1996, 35, 3302-3310.	1.8	13
156	Microwave heating effects on acylation of anisole, catalyzed by BEA zeolite supported on \hat{l}^2 -SiC. Catalysis Communications, 2009, 10, 477-480.	1.6	13
157	Hydrophobic gold catalysts: From synthesis on passivated silica to synthesis on few-layer graphene. Catalysis Today, 2014, 235, 90-97.	2.2	13
158	Activation of few layer graphene by μW-assisted oxidation in water via formation of nanoballs – Support for platinum nanoparticles. Journal of Colloid and Interface Science, 2015, 451, 221-230.	5.0	13
159	High surface-to-volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes. Catalysis Today, 2010, 150, 133-139.	2.2	12
160	Playing with covalent triazine framework tiles for improved CO ₂ adsorption properties and catalytic performance. Beilstein Journal of Nanotechnology, 2019, 10, 1217-1227.	1.5	12
161	Comparison and calibration of diverse passive samplers used for the air sampling of pesticides during a regional sampling monitoring campaign. Atmospheric Pollution Research, 2020, 11, 1217-1225.	1.8	12
162	Graphite Felt-Sandwiched Ni/SiC Catalysts for the Induction Versus Joule-Heated Sabatier Reaction: Assessing the Catalyst Temperature at the Nanoscale. ACS Sustainable Chemistry and Engineering, 2022, 10, 622-632.	3.2	12

#	Article	IF	Citations
163	Performance comparison of Ir/CNF and Ir/Al2O3 catalysts in a 2 N hydrazine microthruster. Catalysis Letters, 2005, 99, 177-180.	1.4	11
164	BETA zeolite supported on silicon carbide for Friedel-Crafts fixed-bed reactions. Journal of Molecular Catalysis A, 2007, 278, 64-71.	4.8	11
165	Towards the oxygenated phase coverage rate of \hat{l}^2 -SiC surface. Diamond and Related Materials, 2008, 17, 1867-1870.	1.8	11
166	Microstructural Analysis and Energyâ€Filtered TEM Imaging to Investigate the Structure–Activity Relationship in Fischer–Tropsch Catalysts. ChemCatChem, 2013, 5, 2610-2620.	1.8	11
167	Design of Fe3–xO4 raspberry decorated graphene nanocomposites with high performances in lithium-ion battery. Journal of Energy Chemistry, 2016, 25, 272-277.	7.1	11
168	Second Youth of a Metal-Free Dehydrogenation Catalyst: When î ³ -Al ₂ O ₃ Meets Coke Under Oxygen- and Steam-Free Conditions. ACS Catalysis, 2019, 9, 9474-9484.	5.5	11
169	Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS	4.0	10
170	Halfâ€Sandwich Nickel(II) NHCâ€Picolyl Complexes as Catalysts for the Hydrosilylation of Carbonyl Compounds: Evidence for NHCâ€Nickel Nanoparticles under Harsh Reaction Conditions. European Journal of Inorganic Chemistry, 2021, 2021, 3074-3082.	1.0	10
171	Supported BETA zeolite on preshaped \hat{l}^2 -SiC as clean Friedel-Crafts liquid-phase catalyst. Topics in Catalysis, 2007, 45, 111-116.	1.3	9
172	Microscopy investigations of the microstructural change and thermal response of cobalt-based nanoparticles confined inside a carbon nanotube medium. Journal of Materials Chemistry A, 2015, 3, 11203-11214.	5.2	9
173	CO2 Electrochemical Reduction by Exohedral N-Pyridine Decorated Metal-Free Carbon Nanotubes. Energies, 2020, 13, 2703.	1.6	9
174	Radiofrequency-driven selective oxidation of H2S on hierarchical metal-free catalyst containing defects. Applied Catalysis A: General, 2021, 620, 118171.	2.2	9
175	High temperature H2Sremoval over high specific surface area [beta]-SiC supported iron oxide sorbent Part 2Sulfidation and regeneration. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 443-450.	1.7	8
176	A new recyclable Pd catalyst supported on vertically aligned carbon nanotubes for microwaves-assisted Heck reactions. Comptes Rendus Chimie, 2011, 14, 663-670.	0.2	8
177	Passive air samplers based on ceramic adsorbent for monitoring of organochlorine pesticides, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in outdoor air. Environmental Technology and Innovation, 2020, 20, 101094.	3.0	8
178	Tailoring Properties of Metal-Free Catalysts for the Highly Efficient Desulfurization of Sour Gases under Harsh Conditions. Catalysts, 2021, 11, 226.	1.6	8
179	Catalytic Action of Gold and Copper Crystals in the Growth of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 3609-3615.	0.9	7
180	High yield graphene and few-layer graphene synthesis assisted by microwaves. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1009-1011.	1.3	7

#	Article	IF	Citations
181	Palladium Nanosheet-Carbon Black Powder Composites for Selective Hydrogenation of Alkynes to Alkenes. ACS Applied Nano Materials, 2021, 4, 2265-2277.	2.4	7
182	Inducing atomically dispersed Cl–FeN ₄ sites for ORRs in the SiO ₂ -mediated synthesis of highly mesoporous N-enriched C-networks. Journal of Materials Chemistry A, 2022, 10, 6153-6164.	5 . 2	7
183	Palladium Supported on Calcium Decorated Carbon Nanotube Hybrids for Chemoselective Hydrogenation of Cinnamaldehyde. Frontiers in Chemistry, 2019, 7, 751.	1.8	6
184	Catalytic Nanopatterning of Few-Layer Graphene. ACS Catalysis, 2017, 7, 5941-5949.	5 . 5	6
185	3Dâ€TEM Characterization of the Porosity in Nanoscaled Materials: Application to Catalysis. Advanced Engineering Materials, 2011, 13, 122-127.	1.6	5
186	Carbon Felt Monoliths Coated with a Highly Hydrophobic Mesoporous Carbon Phase for the Continuous Oil Sorption/Filtration from Water. Advanced Sustainable Systems, 2018, 2, 1800040.	2.7	5
187	Cathode Materials for Polymer Electrolyte Fuel Cells Based on Vertically Aligned Carbon Filaments. ECS Transactions, 2011, 41, 1089-1097.	0.3	4
188	FLG–high aspect ratio MWNTs hybrid film prepared by hot spray technique. Materials Letters, 2013, 96, 57-59.	1.3	4
189	Cooperative effect of Pt single-atoms and nanoparticles supported on carbonaceous materials: Catalytic NO decomposition as a probe reaction. Applied Catalysis A: General, 2021, 617, 118103.	2.2	4
190	Novos materiais à base de nanofibras de carbono como suporte de catalisador na decomposição da hidrazina. Quimica Nova, 2003, 26, 665-669.	0.3	3
191	Decomposição catalÃŧica da hidrazina sobre irÃdio suportado em compósitos à base de nanofibras de carbono para propulsão espacial: testes em condições reais. Quimica Nova, 2005, 28, 42-45.	0.3	3
192	Tridimensional few-layer graphene-like structures from sugar-salt mixtures as high-performance supercapacitor electrodes. Materials Today Energy, 2018, 10, 118-125.	2.5	3
193	Measuring current-use pesticides in air: A comparison of silicon carbide foam to XAD as passive air samplers. Environmental Technology and Innovation, 2021, 24, 101876.	3.0	3
194	Urchin-like self-supported carbon nanotubes with macroscopic shaping and fully accessible surface. Materials Letters, 2011, 65, 2482-2485.	1.3	2
195	Exohedrally functionalized carbon-based networks as catalysts for electrochemical syntheses. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100579.	3.2	2
196	Carbon Nanofiber Composite as a Catalytic Hydrazine Decomposition Support for Satellite Propulsion. Japanese Journal of Applied Physics, 2005, 44, 4282-4284.	0.8	1
197	Corrigendum to "Effect of structure and thermal properties of a Fischer–Tropsch catalyst in a fixed bed―[Catal. Today 147S (2009) S305–S312]. Catalysis Today, 2011, 160, 255-256.	2.2	1
198	Nickel Sulfides Decorated SiC Foam for the Low Temperature Conversion of H2S into Elemental Sulfur. Molecules, 2018, 23, 1528.	1.7	1

#	Article	IF	CITATIONS
199	Multimodal hybrid 2D networks via the thiol-epoxide reaction on 1T/2H MoS2 polytypes. Materials Chemistry Frontiers, 2021, 5, 3470-3479.	3.2	1
200	Preparation and characterization of SiC microfibers and Cr3C2 with medium specific surface area for catalytic applications. Studies in Surface Science and Catalysis, 1998, 118, 855-868.	1.5	0
201	Characterization of the deactivation of MoO3-carbon-modified supported on SiC for n-butane dehydrogenation reaction. Studies in Surface Science and Catalysis, 1999, 126, 163-170.	1.5	O
202	ZSM-5 Nanowires Assembly Supported on Medium Surface Area Foam $<1>\hat{l}^2-SiC$ Composite with Nanoscopic Surface Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 3611-3616.	0.9	O