## Ke-cun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8746279/publications.pdf Version: 2024-02-01



KE-CUN ZHANC

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Seasonal Variation of Hypolithic Microbiomes in the Gobi Desert. Microbial Ecology, 2023, 85, 1382-1395.                                                                                                               | 2.8 | 5         |
| 2  | Morphologic changes of simple star dunes during the growth process in Dunhuang, China. Journal of<br>Mountain Science, 2022, 19, 1095-1106.                                                                            | 2.0 | 3         |
| 3  | Integrated System to Combat Aeolian Desertification and Disasters. Structure and Function of Mountain Ecosystems in Japan, 2022, , 219-241.                                                                            | 0.5 | 1         |
| 4  | Mechanisms Responsible for Sand Hazards Along Desert Highways and Their Control: A Case Study of<br>the Wuhai–Maqin Highway in the Tengger Desert, Northwest China. Frontiers in Environmental<br>Science, 2022, 10, . | 3.3 | 2         |
| 5  | The mechanism of sand damage at the Fushaliang section of the Liuyuan–Golmud expressway. Aeolian<br>Research, 2021, 48, 100648.                                                                                        | 2.7 | 10        |
| 6  | The blocking effect of the sand fences quantified using wind tunnel simulations. Journal of Mountain Science, 2020, 17, 2485-2496.                                                                                     | 2.0 | 8         |
| 7  | Quantification of driving factors on NDVI in oasis-desert ecotone using geographical detector method. Journal of Mountain Science, 2019, 16, 2615-2624.                                                                | 2.0 | 13        |
| 8  | Dune dynamics in the southern edge of Dunhuang Oasis and implications for the oasis protection.<br>Journal of Mountain Science, 2018, 15, 2172-2181.                                                                   | 2.0 | 7         |
| 9  | Local Circulation Maintains the Coexistence of Lake-dune Pattern in the Badain Jaran Desert. Scientific Reports, 2017, 7, 40238.                                                                                       | 3.3 | 7         |
| 10 | Key Role of Desert–Oasis Transitional Area in Avoiding Oasis Land Degradation from Aeolian<br>Desertification in Dunhuang, Northwest China. Land Degradation and Development, 2017, 28, 142-150.                       | 3.9 | 38        |
| 11 | Effects of gravel mulch on aeolian transport: a field wind tunnel simulation. Journal of Arid Land, 2015, 7, 296-303.                                                                                                  | 2.3 | 12        |
| 12 | Air density effects on aeolian sand movement: Implications for sediment transport and sand control in regions with extreme altitudes or temperatures. Sedimentology, 2015, 62, 1024-1038.                              | 3.1 | 17        |
| 13 | Morphology and formation mechanism of sand shadow dunes on the Qinghai-Tibet Plateau. Journal of<br>Arid Land, 2015, 7, 10-26.                                                                                         | 2.3 | 19        |
| 14 | Computational fluid dynamics evaluation of the effect of different city designs on the wind environment of a downwind natural heritage site. Journal of Arid Land, 2014, 6, 69-79.                                     | 2.3 | 7         |
| 15 | The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field<br>Wind-Tunnel Experiment Over a Wide Range of Altitude. Boundary-Layer Meteorology, 2014, 150, 299-317.                | 2.3 | 13        |
| 16 | Quantitative analysis on the dynamic characteristics of megadunes around the Crescent Moon Spring,<br>China. Journal of Arid Land, 2014, 6, 255-263.                                                                   | 2.3 | 8         |
| 17 | Characteristics of wind-blown sand in the region of the Crescent Moon Spring of Dunhuang, China.<br>Environmental Earth Sciences, 2013, 70, 3107-3113.                                                                 | 2.7 | 10        |
| 18 | Aeolian sand transport over gobi with different gravel coverages under limited sand supply: A mobile wind tunnel investigation. Aeolian Research, 2013, 11, 67-74.                                                     | 2.7 | 43        |

KE-CUN ZHANG

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Use of groundâ€penetrating radar to investigate feathery complex linear dunes in the Kumtagh Desert,<br>Northâ€west China. Near Surface Geophysics, 2013, 11, 11-18.                                              | 1.2 | 3         |
| 20 | A wind tunnel study of the parameters for aeolian sand transport above a wetted sand surface using sands from a tropical humid coastal region of southern China. Environmental Earth Sciences, 2012, 67, 243-250. | 2.7 | 8         |
| 21 | Characteristics of wind-blown sand and near-surface wind regime in the Tengger Desert, China.<br>Aeolian Research, 2012, 6, 83-88.                                                                                | 2.7 | 25        |
| 22 | Thermodynamic effects on particle movement: Wind tunnel simulation results. Chinese Geographical Science, 2012, 22, 178-187.                                                                                      | 3.0 | 1         |
| 23 | New discoveries on the effects of desertification on the ground temperature of permafrost and its significance to the Qinghai-Tibet Plateau. Science Bulletin, 2012, 57, 838-842.                                 | 1.7 | 17        |
| 24 | Controlling windblown sand problems by an artificial gravel surface: A case study over the gobi surface of the Mogao Grottoes. Geomorphology, 2011, 134, 461-469.                                                 | 2.6 | 26        |
| 25 | A wind tunnel study of aeolian sand transport on a wetted sand surface using sands from tropical humid coastal southern China. Environmental Earth Sciences, 2011, 64, 1375-1385.                                 | 2.7 | 16        |
| 26 | Characteristics of wind-blown sand and dynamic environment in the section of Wudaoliang-Tuotuo<br>River along the Qinghai-Tibet Railway. Environmental Earth Sciences, 2011, 64, 2039-2046.                       | 2.7 | 12        |
| 27 | Damage by wind-blown sand and its control along Qinghai-Tibet Railway in China. Aeolian Research, 2010, 1, 143-146.                                                                                               | 2.7 | 89        |
| 28 | Study on the Characteristics of Flow Field and the Mechanism of Wind-blown Sand Disasters in the<br>Tuotuohe Region along the Qinghai-Tibet Railway. Arid Zone Research, 2010, 27, 303-308.                       | 0.1 | 5         |
| 29 | Characteristics of wind-blown sand on Gobi/mobile sand surface. Environmental Geology, 2008, 54, 411-416.                                                                                                         | 1.2 | 19        |
| 30 | Characteristics of near-surface wind regimes in the Taklimakan Desert, China. Geomorphology, 2008, 96, 39-47.                                                                                                     | 2.6 | 47        |
| 31 | Field observations on the protective effect of semi-buried checkerboard sand barriers.<br>Geomorphology, 2007, 88, 193-200.                                                                                       | 2.6 | 25        |
| 32 | The temporal change of driving factors during the course of land desertification in arid region of North China: the case of Minqin County. Environmental Geology, 2007, 51, 999-1008.                             | 1.2 | 62        |
| 33 | An experimental study of the mechanisms of freeze/thaw and wind erosion of ancient adobe buildings in northwest China. Bulletin of Engineering Geology and the Environment, 2007, 66, 153-159.                    | 3.5 | 25        |
| 34 | Experimental study of surface texture and resonance mechanism of booming sand. Science in China<br>Series D: Earth Sciences, 2007, 50, 1351-1358.                                                                 | 0.9 | 0         |
| 35 | Pulsatory characteristics of wind velocity in sand flow over typical underlying surfaces. Science in China Series D: Earth Sciences, 2007, 50, 247-253.                                                           | 0.9 | 2         |
| 36 | Temporal variations of sandstorms in Minqin oasis during 1954–2000. Environmental Geology, 2005, 49, 332-338.                                                                                                     | 1.2 | 21        |

| #  | Article                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Environmental characteristics of sandstorm of Minqin Oasis in China for recent 50 years. Journal of<br>Environmental Sciences, 2005, 17, 857-60. | 6.1 | 2         |