
Dahye Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8745793/publications.pdf Version: 2024-02-01

DAHVE KANC

#	Article	IF	CITATIONS
1	Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents. Nature Communications, 2019, 10, 4117.	12.8	137
2	Site-Selective Functionalization of Pyridinium Derivatives via Visible-Light-Driven Photocatalysis with Quinolinone. Journal of the American Chemical Society, 2019, 141, 9239-9248.	13.7	98
3	Direct Phosphonation of Quinolinones and Coumarins Driven by the Photochemical Activity of Substrates and Products. Organic Letters, 2017, 19, 1394-1397.	4.6	91
4	Rh(III) and Ru(II)-Catalyzed Site-Selective C–H Alkynylation of Quinolones. Organic Letters, 2015, 17, 1938-1941.	4.6	72
5	Unraveling innate substrate control in site-selective palladium-catalyzed C–H heterocycle functionalization. Chemical Science, 2016, 7, 3900-3909.	7.4	58
6	Metal-free photocatalytic trifluoromethylative pyridylation of unactivated alkenes. Green Chemistry, 2018, 20, 5209-5214.	9.0	58
7	Rhodium atalyzed Direct C–H Phosphorylation of (Hetero)arenes Suitable for Late‧tage Functionalization. Advanced Synthesis and Catalysis, 2016, 358, 1296-1301.	4.3	49
8	Siteâ€Selective Câ^'H Bond Functionalization of Chromones and Coumarins. Asian Journal of Organic Chemistry, 2018, 7, 1136-1150.	2.7	44
9	Allylic Acetals as Acrolein Oxonium Precursors in Tandem Câ^'H Allylation and [3+2] Dipolar Cycloaddition. Angewandte Chemie - International Edition, 2019, 58, 9470-9474.	13.8	44
10	Synthesis of 2-Benzazepines from Benzylamines and MBH Adducts Under Rhodium(III) Catalysis via C(sp ²)–H Functionalization. ACS Catalysis, 2018, 8, 742-746.	11.2	41
11	Visible-Light-Induced C–O Bond Formation for the Construction of Five- and Six-Membered Cyclic Ethers and Lactones. Organic Letters, 2018, 20, 7437-7441.	4.6	40
12	Mechanism of Rh-Catalyzed Oxidative Cyclizations: Closed versus Open Shell Pathways. Accounts of Chemical Research, 2016, 49, 1263-1270.	15.6	32
13	Visible-Light Excitation of Quinolinone-Containing Substrates Enables Divergent Radical Cyclizations. Organic Letters, 2019, 21, 3417-3421.	4.6	31
14	Reactivity of Morita–Baylis–Hillman Adducts in C–H Functionalization of (Hetero)aryl Nitrones: Access to Bridged Cycles and Carbazoles. Organic Letters, 2018, 20, 4632-4636.	4.6	28
15	Stereoselective construction of sterically hindered oxaspirocycles <i>via</i> chiral bidentate directing group-mediated C(sp ³)–O bond formation. Chemical Science, 2018, 9, 1473-1480.	7.4	28
16	Palladiumâ€Catalyzed Divergent Arylation with Triazolopyridines: Oneâ€Pot Synthesis of 6â€Arylâ€2â€Î±â€styrylpyridines. Advanced Synthesis and Catalysis, 2016, 358, 958-964.	4.3	27
17	Rh ^I â€Catalyzed Siteâ€Selective Decarbonylative Alkenylation and Arylation of Quinolones under Chelation Assistance. European Journal of Organic Chemistry, 2015, 2015, 3671-3678.	2.4	26
18	Room-Temperature Ring-Opening of Quinoline, Isoquinoline, and Pyridine with Low-Valent Titanium. Journal of the American Chemical Society, 2017, 139, 12804-12814.	13.7	24

Dahye Kang

#	Article	IF	CITATIONS
19	Enamine <i>N</i> -Oxides: Synthesis and Application to Hypoxia-Responsive Prodrugs and Imaging Agents. ACS Central Science, 2021, 7, 631-640.	11.3	24
20	Synthesis of heterocyclic-fused benzopyrans via the Pd(ii)-catalyzed C–H alkenylation/C–O cyclization of flavones and coumarins. Organic and Biomolecular Chemistry, 2014, 12, 3413-3422.	2.8	21
21	One-pot synthesis of 2-naphthols from nitrones and MBH adducts <i>via</i> decarboxylative N–O bond cleavage. Organic Chemistry Frontiers, 2018, 5, 3210-3218.	4.5	21
22	Bioorthogonal Retro-Cope Elimination Reaction of <i>N</i> , <i>N</i> -Dialkylhydroxylamines and Strained Alkynes. Journal of the American Chemical Society, 2021, 143, 5616-5621.	13.7	15
23	Bioorthogonal click and release: A general, rapid, chemically revertible bioconjugation strategy employing enamine N-oxides. CheM, 2022, 8, 2260-2277.	11.7	14
24	Regiodivergent Ring-Opening Cross-Coupling of Vinyl Aziridines with Phosphorus Nucleophiles: Access to Phosphorus-Containing Amino Acid Derivatives. Organic Letters, 2018, 20, 7571-7575.	4.6	13
25	Bioorthogonal Hydroamination of Push–Pullâ€Activated Linear Alkynes. Angewandte Chemie - International Edition, 2021, 60, 16947-16952.	13.8	7
26	A human protein hydroxylase that accepts D-residues. Communications Chemistry, 2020, 3, .	4.5	6
27	Bioorthogonal Hydroamination of Push–Pullâ€Activated Linear Alkynes. Angewandte Chemie, 2021, 133, 17084-17089.	2.0	3
28	Allylic Acetals as Acrolein Oxonium Precursors in Tandem Câ^'H Allylation and [3+2] Dipolar Cycloaddition. Angewandte Chemie, 2019, 131, 9570-9574.	2.0	1