Piotr Ladyzynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8745643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Digital Planimetry With a New Adaptive Calibration Procedure Results in Accurate and Precise Wound Area Measurement at Curved Surfaces. Journal of Diabetes Science and Technology, 2022, 16, 128-136.	1.3	7
2	Dynamic Bayesian networks for prediction of health status and treatment effect in patients with chronic lymphocytic leukemia. Scientific Reports, 2022, 12, 1811.	1.6	2
3	The Effect of High and Variable Glucose on the Viability of Endothelial Cells Co-Cultured with Smooth Muscle Cells. International Journal of Molecular Sciences, 2022, 23, 6704.	1.8	1
4	NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes. Cells, 2021, 10, 314.	1.8	59
5	Wound surface area measurement methods. Biocybernetics and Biomedical Engineering, 2021, 41, 1454-1465.	3.3	5
6	Analysis of the microbiota in the diabetic foot ulcers: Is research standardization required?. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 362-370.	0.1	0
7	Effect of glucose concentration and culture substrate on HUVECs viability in in vitro cultures: A literature review and own results. Biocybernetics and Biomedical Engineering, 2021, 41, 1390-1405.	3.3	2
8	Against all odds. International Journal of Artificial Organs, 2021, 44, 589-589.	0.7	0
9	Insulin in Type 1 and Type 2 Diabetes—Should the Dose of Insulin Before a Meal be Based on Glycemia or Meal Content?. Nutrients, 2019, 11, 607.	1.7	16
10	Efficacy of automatic bolus calculator with automatic speech recognition in patients with type 1 diabetes: A randomized crossâ€over trial. Journal of Diabetes, 2018, 10, 600-608.	0.8	17
11	Analysis: A Step Toward Standardizing Diabetic Foot Images. Journal of Diabetes Science and Technology, 2018, 12, 174-175.	1.3	0
12	Accuracy of Automatic Carbohydrate, Protein, Fat and Calorie Counting Based on Voice Descriptions of Meals in People with Type 1 Diabetes. Nutrients, 2018, 10, 518.	1.7	15
13	Response of human normal and leukemia cells to factors released by amnion fragments in vitro. PLoS ONE, 2018, 13, e0195035.	1.1	2
14	Insulin Bolus Calculator with Automatic Speech Recognition. IFMBE Proceedings, 2018, , 603-606.	0.2	0
15	A Randomized Controlled Study of an Insulin Dosing Application That Uses Recognition and Meal Bolus Estimations. Journal of Diabetes Science and Technology, 2017, 11, 43-49.	1.3	15
16	The First Use of Bolus Calculator With Speech Analyzer. Journal of Diabetes Science and Technology, 2017, 11, 7-11.	1.3	5
17	Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies. Journal of Artificial Organs, 2016, 19, 270-277.	0.4	6
18	Treatment of patients with type 1 diabetes – Insulin pumps or multiple injections?. Biocybernetics and Biomedical Engineering, 2016, 36, 1-8.	3.3	18

PIOTR LADYZYNSKI

#	Article	IF	CITATIONS
19	Wound Area Measurement with Digital Planimetry: Improved Accuracy and Precision with Calibration Based on 2 Rulers. PLoS ONE, 2015, 10, e0134622.	1.1	32
20	An Algorithm Based on Voice Description of Meal for Insulin Dose Calculation to Compensate Food Intake. IFMBE Proceedings, 2015, , 1441-1444.	0.2	4
21	A network meta-analysis of progression free survival and overall survival in first-line treatment of chronic lymphocytic leukemia. Cancer Treatment Reviews, 2015, 41, 77-93.	3.4	14
22	In Memoriam Jan Maria Wojcicki (1946 – 2013). International Journal of Artificial Organs, 2014, 37, 96-97.	0.7	0
23	A New Smartphone-Based Method for Wound Area Measurement. Artificial Organs, 2014, 38, 346-352.	1.0	40
24	Jan Maria Wojcicki (1946-2013): Scientist, Organizer, Friend. Artificial Organs, 2014, 38, 271-273.	1.0	0
25	Validation of a hemoglobin A1c model in patients with type 1 and type 2 diabetes and its use to go beyond the averaged relationship of hemoglobin A1c and mean glucose level. Journal of Translational Medicine, 2014, 12, 328.	1.8	17
26	The influence of ambient temperature on foot temperature in patients with diabetic foot ulceration. Biocybernetics and Biomedical Engineering, 2014, 34, 178-183.	3.3	2
27	What We Can Really Expect from Telemedicine in Intensive Diabetes Treatment: 10 Years Later. Diabetes Technology and Therapeutics, 2013, 15, 260-268.	2.4	11
28	Accuracy and Precision of Selected Wound Area Measurement Methods in Diabetic Foot Ulceration. Diabetes Technology and Therapeutics, 2013, 15, 711-720.	2.4	32
29	Microdialysis Monitoring of Glucose, Lactate, Glycerol, and Pyruvate in Patients with Diabetic Ketoacidosis. International Journal of Artificial Organs, 2013, 36, 869-877.	0.7	5
30	Monitoring of Sweat Secretion from Eccrine Sweat Glands Using Electric Conductivity Method. Biocybernetics and Biomedical Engineering, 2012, 32, 47-57.	3.3	5
31	Monitoring of Diabetic Foot Syndrome Treatment: Some New Perspectives. Artificial Organs, 2011, 35, 176-182.	1.0	14
32	Preventive Systems for the Late Complications of Diabetes. Biocybernetics and Biomedical Engineering, 2011, 31, 3-21.	3.3	3
33	Hemoglobin Glycation Rate Constant in Non-diabetic Individuals. Annals of Biomedical Engineering, 2011, 39, 2721-2734.	1.3	18
34	A New Imaging and Data Transmitting Device for Telemonitoring of Diabetic Foot Syndrome Patients. Diabetes Technology and Therapeutics, 2011, 13, 861-867.	2.4	19
35	Area of the Diabetic Ulcers Estimated Applying a Foot Scanner–Based Home Telecare System and Three Reference Methods. Diabetes Technology and Therapeutics, 2011, 13, 1101-1107.	2.4	23
36	Soft Methods in Trend Detection. Advances in Intelligent and Soft Computing, 2010, , 395-402.	0.2	1

PIOTR LADYZYNSKI

#	Article	IF	CITATIONS
37	Application of the Home Telecare System in the Treatment of Diabetic Foot Syndrome. IFMBE Proceedings, 2009, , 1049-1052.	0.2	5
38	Validation of Hemoglobin Glycation Models Using Glycemia Monitoring InÂVivo and Culturing of Erythrocytes InÂVitro. Annals of Biomedical Engineering, 2008, 36, 1188-1202.	1.3	17
39	Home telecare during intensive insulin treatment – metabolic control does not improve as much as expected. Journal of Telemedicine and Telecare, 2007, 13, 44-47.	1.4	25
40	Microdialysis Technique as a Monitoring System for Acute Complications of Diabetes. Artificial Organs, 2007, 32, 070802063815012-???.	1.0	6
41	Telematic support in intensive insulin treatment. Frequency of the data transfer. Diabetes Research and Clinical Practice, 2006, 74, S225-S228.	1.1	5
42	Mobile Telecare System for Intensive Insulin Treatment and Patient Education. First Applications for Newly Diagnosed Type 1 Diabetic Patients. International Journal of Artificial Organs, 2006, 29, 1074-1081.	0.7	16
43	Toward the improvement of diabetes treatment: recent developments in technical support. Journal of Artificial Organs, 2003, 6, 73-87.	0.4	22
44	Reliability of blood glucose self-monitoring and its influence on glycemic control in highly motivated type 1 diabetic patients. Diabetes Care, 1999, 22, 854-856.	4.3	11