Giuseppe Toscano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/874431/publications.pdf

Version: 2024-02-01

63 papers 1,338 citations

331538 21 h-index 377752 34 g-index

64 all docs

64 docs citations

64 times ranked 1599 citing authors

#	Article	IF	CITATIONS
1	Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel, 2014, 135, 9-14.	3.4	97
2	Torrefaction of tomato industry residues. Fuel, 2015, 143, 89-97.	3.4	77
3	Investigation on wood pellet quality and relationship between ash content and the most important chemical elements. Biomass and Bioenergy, 2013, 56, 317-322.	2.9	74
4	Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels. Waste Management, 2016, 47, 62-68.	3.7	73
5	Analysis of the characteristics of the residues of the wine production chain finalized to their industrial and energy recovery. Biomass and Bioenergy, 2013, 55, 260-267.	2.9	62
6	Emission from realistic utilization of wood pellet stove. Energy, 2014, 68, 644-650.	4.5	49
7	Analysis of the characteristics of the tomato manufacturing residues finalized to the energy recovery. Biomass and Bioenergy, 2013, 51, 177-182.	2.9	46
8	The Use of Near-Infrared (NIR) Spectroscopy and Principal Component Analysis (PCA) To Discriminate Bark and Wood of the Most Common Species of the Pellet Sector. Energy & Energy & 2017, 31, 2814-2821.	2.5	42
9	Effect of fuel quality classes on the emissions of a residential wood pellet stove. Fuel, 2018, 211, 269-277.	3.4	40
10	Determination of polycyclic aromatic hydrocarbons in domestic pellet stove emissions. Biomass and Bioenergy, 2011, 35, 4261-4267.	2.9	39
11	Near infrared spectroscopy for the discrimination between different residues of the wood processing industry in the pellet sector. Fuel, 2018, 217, 650-655.	3.4	37
12	Application of the Non-Destructive NIR Technique for the Evaluation of Strawberry Fruits Quality Parameters. Foods, 2020, 9, 441.	1.9	37
13	Vegetable oil and fat viscosity forecast models based on iodine number and saponification number. Biomass and Bioenergy, 2012, 46, 511-516.	2.9	36
14	Preliminary experimental study on biofuel production by deoxygenation of Jatropha oil. Fuel Processing Technology, 2015, 137, 31-37.	3.7	32
15	Evaluation of the characteristics of vineyard pruning residues for energy applications: effect of different copper-based treatments. Journal of Agricultural Engineering, 2016, 47, 22.	0.7	31
16	Prediction of gross calorific value and ash content of woodchip samples by means of FT-NIR spectroscopy. Fuel Processing Technology, 2018, 169, 77-83.	3.7	31
17	Pelleting Vineyard Pruning at Low Cost with a Mobile Technology. Energies, 2018, 11, 2477.	1.6	30
18	Investigation of woodchip quality: Relationship between the most important chemical and physical parameters. Energy, 2016, 106, 38-44.	4.5	29

#	Article	IF	Citations
19	Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects. Renewable Energy, 2018, 121, 513-520.	4.3	29
20	FTIR spectroscopy for determination of the raw materials used in wood pellet production. Fuel, 2022, 313, 123017.	3.4	29
21	Effect of Biomass Waste Materials as Unconventional Aggregates in Multifunctional Mortars for Indoor Application. Procedia Engineering, 2016, 161, 655-659.	1.2	26
22	Identification of different woody biomass for energy purpose by means of Soft Independent Modeling of Class Analogy applied to thermogravimetric analysis. Energy, 2015, 83, 351-357.	4.5	23
23	Prediction of pellet quality through machine learning techniques and near-infrared spectroscopy. Computers and Industrial Engineering, 2020, 147, 106566.	3.4	22
24	CALORIFIC VALUE DETERMINATION OF SOLID BIOMASS FUEL BY SIMPLIFIED METHOD. Journal of Agricultural Engineering, 2009, 40, 1.	0.7	19
25	ASH FUSIBILITY CHARACTERISTICS OF SOME BIOMASS FEEDSTOCKS AND EXAMINATION OF THE EFFECTS OF INORGANIC ADDITIVES. Journal of Agricultural Engineering, 2010, 41, 13.	0.7	19
26	ANALYSIS OF THE PHYSICALAND CHEMICAL CHARACTERISTICS OF VEGETABLE OILS AS FUEL. Journal of Agricultural Engineering, 2007, 38, 39.	0.7	16
27	Laboratory customized online measurements for the prediction of the key-parameters of biomass quality control. Journal of Near Infrared Spectroscopy, 2019, 27, 15-25.	0.8	16
28	Performance of a portable NIR spectrometer for the determination of moisture content of industrial wood chips fuel. Fuel, 2022, 320, 123948.	3.4	16
29	Soft Independent Modelling of Class Analogy applied to infrared spectroscopy for rapid discrimination between hardwood and softwood. Energy, 2016, 117, 251-258.	4.5	15
30	Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues. Resources, 2022, 11, 7.	1.6	15
31	Effect of the carbon oxidation state of biomass compounds on the relationship between GCV and carbon content. Biomass and Bioenergy, 2013, 48, 231-238.	2.9	14
32	Quality of residues of the biodiesel chain in the energy field. Industrial Crops and Products, 2015, 75, 91-97.	2.5	14
33	Comparison of three different classification methods performance for the determination of biofuel quality by means of NIR spectroscopy. Journal of Chemometrics, 2019, 33, e3145.	0.7	14
34	Evaluation of non-steady state condition contribution to the total emissions of residential wood pellet stove. Energy, 2015, 88, 650-657.	4.5	13
35	Rapid Quality Control of Woodchip Parameters Using a Hand-Held Near Infrared Spectrophotometer. Processes, 2020, 8, 1413.	1.3	13
36	Biofuel, Bioenergy and Feed Valorization of By-Products and Residues from Hevea brasiliensis Cultivation to Enhance Sustainability. Resources, 2020, 9, 114.	1.6	12

#	Article	IF	CITATIONS
37	Evaluation of cradle to gate environmental impact of frozen green bean production by means of life cycle assessment. Journal of Cleaner Production, 2019, 236, 117638.	4.6	11
38	Application of ISO standards on sampling and effects on the quality assessment of solid biofuel employed in a real power plant. Fuel, 2020, 278, 118142.	3.4	11
39	Life Cycle Assessment of Protected Strawberry Productions in Central Italy. Sustainability, 2021, 13, 4879.	1.6	11
40	Engineered solid biofuel from herbaceous biomass mixed with inorganic additives. Fuel, 2019, 256, 115895.	3.4	10
41	Storage of Fine Woodchips from a Medium Rotation Coppice Eucalyptus Plantation in Central Italy. Energies, 2020, 13, 2355.	1.6	10
42	Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy. Energy, 2018, 147, 51-58.	4.5	9
43	Study of the scattering effects on NIR data for the prediction of ash content using EMSC correction factors. Journal of Chemometrics, 2019, 33, e3111.	0.7	9
44	Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues. Resources, 2020, 9, 94.	1.6	9
45	Experimental Study to Support Local Sunflower Oil Chains: Production of Cold Pressed Oil in Central Italy. Agriculture (Switzerland), 2019, 9, 231.	1.4	8
46	Near infrared spectroscopy for assessing mechanical properties of Castanea sativa wood samples. Journal of Agricultural Engineering, 2019, 50, 191-197.	0.7	8
47	Refined soybean oil transesterification enhanced by sonication. Biomass and Bioenergy, 2011, 35, 2867-2873.	2.9	7
48	Determination of the renewable energy content of chemically modified biofuels. Biomass and Bioenergy, 2011, 35, 3139-3146.	2.9	5
49	Solid biofuels production from agricultural residues and processing by-products by means of torrefaction treatment: the case of sunflower chain. Journal of Agricultural Engineering, 2014, 45, 97.	0.7	5
50	An Event Based Machine Learning Framework for Predictive Maintenance in Industry 4.0., 2019, , .		5
51	Brassica carinata Seed Meal as Soil Amendment and Potential Biofumigant. Crops, 2022, 2, 233-246.	0.6	5
52	Fast measurement by infrared spectroscopy as support to woody biofuels quality determination. Journal of Agricultural Engineering, 2016, 47, 17.	0.7	4
53	Valorising Agricultural Residues through Pelletisation. Processes, 2022, 10, 232.	1.3	4
54	Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability. Resources, 2022, 11, 57.	1.6	4

#	Article	IF	Citations
55	Sustainability of sunflower cultivation for biodiesel production in central Italy according to the Renewable Energy Directive methodology. Journal of Agricultural Engineering, 2014, 44, 175.	0.7	3
56	Advancements in the Conversion of Lipid-Rich Biowastes and Lignocellulosic Residues into High-Quality Road and Jet Biofuels Using Nanomaterials as Catalysts. Processes, 2022, 10, 187.	1.3	3
57	Validity of the Mechanical Threshing of Onion Seeds from the Point of View of Seed Quality. Agriculture (Switzerland), 2017, 7, 102.	1.4	2
58	Investigation on woodchip quality with respect to ISO standards and relationship among quality parameters. Fuel, 2020, 279, 118559.	3.4	2
59	EVALUATION OFAMATHEMATICAL MODEL FOR OIL EXTRACTION FROM OLEAGINOUS SEEDS. Journal of Agricultural Engineering, 2007, 38, 11.	0.7	1
60	CONSIDERATIONS ON RENEWABLE ENERGY SOURCES AND THEIR RELATED PERSPECTIVES OF AGRICULTURAL ENGINEERING. Journal of Agricultural Engineering, 2010, 41, 35.	0.7	1
61	Sustainability of grape-ethanol energy chain. Journal of Agricultural Engineering, 2014, 45, 119.	0.7	1
62	Comparison among electric generators fueled with different vegetable oils by means of the antioxidant level analysis in lubricating oil. Biomass and Bioenergy, 2014, 67, 119-124.	2.9	1
63	Forests and Soils: Sustainable Products and Ecosystem Services for Human Well-Being., 2020,, 617-630.		0