## Nicholas F Larusso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8744234/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Induced Pluripotent Stem Cells From Subjects With Primary Sclerosing Cholangitis Develop a<br>Senescence Phenotype Following Biliary Differentiation. Hepatology Communications, 2022, 6, 345-360.                                       | 4.3  | 12        |
| 2  | Polycystic Liver Disease: Advances in Understanding and Treatment. Annual Review of Pathology:<br>Mechanisms of Disease, 2022, 17, 251-269.                                                                                              | 22.4 | 15        |
| 3  | Highâ€Resolution Exposomics and Metabolomics Reveals Specific Associations in Cholestatic Liver Diseases. Hepatology Communications, 2022, 6, 965-979.                                                                                   | 4.3  | 11        |
| 4  | Autophagy promotes hepatic cystogenesis in polycystic liver disease by depletion of cholangiocyte ciliogenic proteins. Hepatology, 2022, 75, 1110-1122.                                                                                  | 7.3  | 7         |
| 5  | Comparative Performance of Quantitative and Qualitative Magnetic Resonance Imaging Metrics in Primary Sclerosing Cholangitis. , 2022, 1, 287-295.                                                                                        |      | 1         |
| 6  | Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Seminars in Immunopathology, 2022, 44, 527-544.                                                                                 | 6.1  | 16        |
| 7  | Long non-coding RNA ACTA2-AS1 promotes ductular reaction by interacting with the p300/ELK1 complex. Journal of Hepatology, 2022, 76, 921-933.                                                                                            | 3.7  | 15        |
| 8  | Cellular senescence in the cholangiopathies. Current Opinion in Gastroenterology, 2022, 38, 121-127.                                                                                                                                     | 2.3  | 9         |
| 9  | Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology, 2022, 76, 1240-1242.                                                                                                                                         | 7.3  | 1         |
| 10 | DNA methylation profile of liver tissue in end-stage cholestatic liver disease. Epigenomics, 2022, 14, 481-497.                                                                                                                          | 2.1  | 2         |
| 11 | Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nature Reviews<br>Gastroenterology and Hepatology, 2022, 19, 585-604.                                                                                  | 17.8 | 15        |
| 12 | Bile Acid Profiles in Primary Sclerosing Cholangitis and Their Ability to Predict Hepatic Decompensation. Hepatology, 2021, 74, 281-295.                                                                                                 | 7.3  | 40        |
| 13 | Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. Journal of Hepatology, 2021, 74, 394-406.                                                              | 3.7  | 14        |
| 14 | Early Cholangiocarcinoma Detection With Magnetic Resonance Imaging Versus Ultrasound in Primary<br>Sclerosing Cholangitis. Hepatology, 2021, 73, 1868-1881.                                                                              | 7.3  | 25        |
| 15 | An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594, 100-105.                                                                                                                                          | 27.8 | 368       |
| 16 | Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2Âmouse. JHEP Reports, 2021, 3, 100250.                                                                                    | 4.9  | 17        |
| 17 | Immunotherapy-based targeting of MSLN <sup>+</sup> activated portal fibroblasts is a strategy for treatment of cholestatic liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1  | 11        |
| 18 | Autophagy-mediated reduction of miR-345 contributes to hepatic cystogenesis in polycystic liver disease. IHEP Reports, 2021, 3, 100345.                                                                                                  | 4.9  | 4         |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Liver Stiffness Measured by Either Magnetic Resonance or Transient Elastography Is Associated With<br>Liver Fibrosis and Is an Independent Predictor of Outcomes Among Patients With Primary Biliary<br>Cholangitis. Journal of Clinical Gastroenterology, 2021, 55, 449-457. | 2.2  | 34        |
| 20 | Primary Sclerosing Cholangitis Risk Estimate Tool (PREsTo) Predicts Outcomes of the Disease: A<br>Derivation and Validation Study Using Machine Learning. Hepatology, 2020, 71, 214-224.                                                                                      | 7.3  | 90        |
| 21 | Changes in Liver Stiffness, Measured by Magnetic Resonance Elastography, Associated With Hepatic<br>Decompensation in Patients With Primary Sclerosing Cholangitis. Clinical Gastroenterology and<br>Hepatology, 2020, 18, 1576-1583.e1.                                      | 4.4  | 30        |
| 22 | The Spectrum of Reactive Cholangiocytes in Primary Sclerosing Cholangitis. Hepatology, 2020, 71, 741-748.                                                                                                                                                                     | 7.3  | 41        |
| 23 | Pansomatostatin Agonist Pasireotide Long-Acting Release for Patients with Autosomal Dominant<br>Polycystic Kidney or Liver Disease with Severe Liver Involvement. Clinical Journal of the American<br>Society of Nephrology: CJASN, 2020, 15, 1267-1278.                      | 4.5  | 24        |
| 24 | Polarized human cholangiocytes release distinct populations of apical and basolateral small extracellular vesicles. Molecular Biology of the Cell, 2020, 31, 2463-2474.                                                                                                       | 2.1  | 11        |
| 25 | Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease:<br>New therapeutic targets. Liver International, 2020, 40, 1670-1685.                                                                                                      | 3.9  | 22        |
| 26 | Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor. Liver International, 2020, 40, 2455-2468.                                                                                                  | 3.9  | 20        |
| 27 | A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. Journal of Hepatology, 2020, 73, 94-101.                                                                                                                             | 3.7  | 111       |
| 28 | An update on primary sclerosing cholangitis epidemiology, outcomes and quantification of alkaline phosphatase variability in a population-based cohort. Journal of Gastroenterology, 2020, 55, 523-532.                                                                       | 5.1  | 22        |
| 29 | lleo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic<br>GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine, 2020, 55, 102759.                                                                               | 6.1  | 43        |
| 30 | Bacterial Cholangitis in Autosomal Dominant Polycystic Kidney and Liver Disease. Mayo Clinic<br>Proceedings Innovations, Quality & Outcomes, 2019, 3, 149-159.                                                                                                                | 2.4  | 4         |
| 31 | The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. Journal of Biological Chemistry, 2019, 294, 18698-18713.                                                             | 3.4  | 22        |
| 32 | Efficacy and safety of curcumin in primary sclerosing cholangitis: an open label pilot study.<br>Scandinavian Journal of Gastroenterology, 2019, 54, 633-639.                                                                                                                 | 1.5  | 23        |
| 33 | Cholangiocyte pathobiology. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 269-281.                                                                                                                                                                                | 17.8 | 285       |
| 34 | Pancreatobiliary Ductal Dilatation: Unique Pathobiological Processes and Endoscopic Revelations.<br>Gastroenterology, 2019, 156, 876-878.                                                                                                                                     | 1.3  | 2         |
| 35 | Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging.<br>Redox Biology, 2018, 17, 259-273.                                                                                                                                             | 9.0  | 103       |
| 36 | Combination of a Histone Deacetylase 6 Inhibitor and a Somatostatin Receptor Agonist Synergistically<br>Reduces Hepatorenal Cystogenesis in an Animal Model of Polycystic Liver Disease. American Journal of<br>Pathology, 2018, 188, 981-994.                                | 3.8  | 16        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | MicroRNA (miR)â€433 and miRâ€22 dysregulations induce histoneâ€deacetylaseâ€6 overexpression and ciliary<br>loss in cholangiocarcinoma. Hepatology, 2018, 68, 561-573.                                                            | 7.3 | 54        |
| 38 | Pathobiology of biliary epithelia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864,<br>1220-1231.                                                                                                          | 3.8 | 29        |
| 39 | A 59-Year-Old Man With New Jaundice. Gastroenterology, 2018, 154, 2035-2036.                                                                                                                                                      | 1.3 | 1         |
| 40 | Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology, 2018, 67, 1088-1108.                                                           | 7.3 | 29        |
| 41 | MicroRNAâ€506 promotes primary biliary cholangitis–like features in cholangiocytes and immune<br>activation. Hepatology, 2018, 67, 1420-1440.                                                                                     | 7.3 | 72        |
| 42 | Polycystic liver disease: The interplay of genes causative for hepatic and renal cystogenesis.<br>Hepatology, 2018, 67, 2462-2464.                                                                                                | 7.3 | 13        |
| 43 | Milder disease stage in patients with primary biliary cholangitis over a 44â€year period: A changing<br>natural history. Hepatology, 2018, 67, 1920-1930.                                                                         | 7.3 | 55        |
| 44 | Targeting senescent cholangiocytes and activated fibroblasts with Bâ€cell lymphomaâ€extra large<br>inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2â^'/â~' ) mice. Hepatology,<br>2018, 67, 247-259. | 7.3 | 99        |
| 45 | Hemobilia: Etiology, diagnosis, and treatment. Liver Research, 2018, 2, 200-208.                                                                                                                                                  | 1.4 | 46        |
| 46 | Metabolomic Profiling of Portal Blood and Bile Reveals Metabolic Signatures of Primary Sclerosing<br>Cholangitis. International Journal of Molecular Sciences, 2018, 19, 3188.                                                    | 4.1 | 28        |
| 47 | Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. Journal of Hepatology, 2018, 69, 676-686.                                                                                                           | 3.7 | 119       |
| 48 | Physiology of Cholngiocytes. , 2018, , 1003-1023.                                                                                                                                                                                 |     | 2         |
| 49 | Cholangiocytes in health and disease: From basic science to novel treatments. Biochimica Et<br>Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1217-1219.                                                               | 3.8 | 2         |
| 50 | ETS Proto-oncogene 1 Transcriptionally Up-regulates the Cholangiocyte Senescence-associated<br>Protein Cyclin-dependent Kinase Inhibitor 2A. Journal of Biological Chemistry, 2017, 292, 4833-4846.                               | 3.4 | 26        |
| 51 | B-type natriuretic peptide overexpression ameliorates hepatorenal fibrocystic disease inÂaÂratÂmodel of<br>polycystic kidney disease. Kidney International, 2017, 92, 657-668.                                                    | 5.2 | 7         |
| 52 | Doublecortin domain containing protein 2 (DCDC2) genetic variants in primary sclerosing cholangitis.<br>Journal of Hepatology, 2017, 67, 651-652.                                                                                 | 3.7 | 1         |
| 53 | TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Cl̃±s signaling. Hepatology, 2017, 66, 1197-1218.                                                       | 7.3 | 46        |
| 54 | Epigenetics in the Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. Seminars in Liver<br>Disease, 2017, 37, 159-174.                                                                                               | 3.6 | 26        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Role of the Intestinal Microbiome in Cholestatic Liver Disease. Digestive Diseases, 2017, 35, 166-168.                                                                                                            | 1.9  | 14        |
| 56 | Cholangiocytes and the environment in primary sclerosing cholangitis: where is the link?. Gut, 2017, 66, 1873-1877.                                                                                               | 12.1 | 37        |
| 57 | Development and characterization of cholangioids from normal and diseased human cholangiocytes<br>as an in vitro model to study primary sclerosing cholangitis. Laboratory Investigation, 2017, 97,<br>1385-1396. | 3.7  | 39        |
| 58 | Charcoal hemoperfusion in the treatment of medically refractory pruritus in cholestatic liver disease. Hepatology International, 2017, 11, 384-389.                                                               | 4.2  | 11        |
| 59 | Primary Cilia in Tumor Biology: The Primary Cilium as a Therapeutic Target in Cholangiocarcinoma.<br>Current Drug Targets, 2017, 18, 958-963.                                                                     | 2.1  | 29        |
| 60 | Therapeutic Targets in Polycystic Liver Disease. Current Drug Targets, 2017, 18, 950-957.                                                                                                                         | 2.1  | 35        |
| 61 | Cholangiocyte Biology. , 2017, , 83-97.                                                                                                                                                                           |      | 1         |
| 62 | Performance of magnetic resonance elastography in primary sclerosing cholangitis. Journal of<br>Gastroenterology and Hepatology (Australia), 2016, 31, 1184-1190.                                                 | 2.8  | 83        |
| 63 | Primary Sclerosing Cholangitis. New England Journal of Medicine, 2016, 375, 2500-2502.                                                                                                                            | 27.0 | 48        |
| 64 | Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology, 2016, 63, 185-196.                                                        | 7.3  | 183       |
| 65 | The enteric microbiome in hepatobiliary health and disease. Liver International, 2016, 36, 480-487.                                                                                                               | 3.9  | 28        |
| 66 | Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology, 2016, 64, 2219-2233.                                                                                                   | 7.3  | 190       |
| 67 | Primary Sclerosing Cholangitis. New England Journal of Medicine, 2016, 375, 1161-1170.                                                                                                                            | 27.0 | 358       |
| 68 | Polycystic Liver Disease: The Benefits of Targeting cAMP. Clinical Gastroenterology and Hepatology, 2016, 14, 1031-1034.                                                                                          | 4.4  | 15        |
| 69 | An Octogenarian With Acute Epigastric Pain: More Than Meets the Eye. Gastroenterology, 2016, 150, e5-e6.                                                                                                          | 1.3  | 26        |
| 70 | Microbiomeâ€immune interactions and liver disease. Clinical Liver Disease, 2015, 5, 83-85.                                                                                                                        | 2.1  | 1         |
| 71 | MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment. Journal of Clinical Medicine, 2015, 4, 1688-1712.                                                                                      | 2.4  | 18        |
| 72 | MicroRNAs and Benign Biliary Tract Diseases. Seminars in Liver Disease, 2015, 35, 026-035.                                                                                                                        | 3.6  | 17        |

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14,<br>644-658.                                                                 | 6.7  | 1,534     |
| 74 | Efficacy of 4 Years of Octreotide Long-Acting Release Therapy in Patients With Severe Polycystic Liver Disease. Mayo Clinic Proceedings, 2015, 90, 1030-1037.                   | 3.0  | 32        |
| 75 | TGR5 in the Cholangiociliopathies. Digestive Diseases, 2015, 33, 420-425.                                                                                                       | 1.9  | 27        |
| 76 | The Cholangiopathies. Mayo Clinic Proceedings, 2015, 90, 791-800.                                                                                                               | 3.0  | 167       |
| 77 | Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease.<br>Journal of Hepatology, 2015, 63, 952-961.                             | 3.7  | 56        |
| 78 | Characterization of cultured cholangiocytes isolated from livers of patients with primary sclerosing cholangitis. Laboratory Investigation, 2014, 94, 1126-1133.                | 3.7  | 85        |
| 79 | Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology, 2014, 59, 2263-2275.                                     | 7.3  | 194       |
| 80 | HDAC6 Is Overexpressed in Cystic Cholangiocytes and Its Inhibition Reduces Cystogenesis. American<br>Journal of Pathology, 2014, 184, 600-608.                                  | 3.8  | 43        |
| 81 | Polycystic liver diseases: advanced insights into the molecular mechanisms. Nature Reviews<br>Gastroenterology and Hepatology, 2014, 11, 750-761.                               | 17.8 | 80        |
| 82 | MicroRNAs in Cholangiopathies. Current Pathobiology Reports, 2014, 2, 133-142.                                                                                                  | 3.4  | 27        |
| 83 | Centrosomal Abnormalities Characterize Human and Rodent Cystic Cholangiocytes and Are Associated with Cdc25A Overexpression. American Journal of Pathology, 2014, 184, 110-121. | 3.8  | 19        |
| 84 | Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut, 2014, 63, 1658-1667.                              | 12.1 | 55        |
| 85 | Calcium signaling in cilia and ciliary-mediated intracellular calcium signaling: Are they independent or coordinated molecular events?. Hepatology, 2014, 60, 1783-1785.        | 7.3  | 9         |
| 86 | Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology, 2013, 58, 409-421.         | 7.3  | 96        |
| 87 | G astroenterology 's Editors-in-Chief: Historical and Personal Perspectives of Their Editorships.<br>Gastroenterology, 2013, 145, 16-31.                                        | 1.3  | 2         |
| 88 | The dynamic biliary epithelia: Molecules, pathways, and disease. Journal of Hepatology, 2013, 58, 575-582.                                                                      | 3.7  | 130       |
| 89 | Micro-computed tomography and nuclear magnetic resonance imaging for noninvasive, live-mouse cholangiography. Laboratory Investigation, 2013, 93, 733-743.                      | 3.7  | 32        |
| 90 | Release of Luminal Exosomes Contributes to TLR4-Mediated Epithelial Antimicrobial Defense. PLoS Pathogens, 2013, 9, e1003261.                                                   | 4.7  | 159       |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. American Journal of Physiology - Renal Physiology, 2013, 304, G1013-G1024.                                                        | 3.4 | 122       |
| 92  | HDAC6 Inhibition Restores Ciliary Expression and Decreases Tumor Growth. Cancer Research, 2013, 73, 2259-2270.                                                                                                                                      | 0.9 | 175       |
| 93  | Physiology of Cholangiocytes. , 2013, 3, 541-565.                                                                                                                                                                                                   |     | 179       |
| 94  | Somatostatin analog therapy for severe polycystic liver disease: results after 2 years. Nephrology<br>Dialysis Transplantation, 2012, 27, 3532-3539.                                                                                                | 0.7 | 120       |
| 95  | Inhibition of Cdc25A Suppresses Hepato-renal Cystogenesis in Rodent Models of Polycystic Kidney and<br>Liver Disease. Gastroenterology, 2012, 142, 622-633.e4.                                                                                      | 1.3 | 40        |
| 96  | Physiology of Cholangiocytes. , 2012, , 1531-1557.                                                                                                                                                                                                  |     | 3         |
| 97  | Up-regulation of microRNA 506 leads to decreased Clâ^'/HCO3â^' anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology, 2012, 56, 687-697.                                                        | 7.3 | 199       |
| 98  | Fibrolamellar hepatocellular carcinoma presenting with budd-chiari syndrome, right atrial thrombus, and pulmonary emboli. Hepatology, 2012, 55, 977-978.                                                                                            | 7.3 | 19        |
| 99  | TLR4 Promotes Cryptosporidium parvum Clearance in a Mouse Model of Biliary Cryptosporidiosis.<br>Journal of Parasitology, 2011, 97, 813-821.                                                                                                        | 0.7 | 32        |
| 100 | The Role of Cilia in the Regulation of Bile Flow. Digestive Diseases, 2011, 29, 6-12.                                                                                                                                                               | 1.9 | 43        |
| 101 | Patients, cells, and organelles: The intersection of science and serendipity. Hepatology, 2011, 53, 1417-1426.                                                                                                                                      | 7.3 | 1         |
| 102 | Cholangiocyte N-Ras Protein Mediates Lipopolysaccharide-induced Interleukin 6 Secretion and Proliferation. Journal of Biological Chemistry, 2011, 286, 30352-30360.                                                                                 | 3.4 | 59        |
| 103 | Randomized Clinical Trial of Long-Acting Somatostatin for Autosomal Dominant Polycystic Kidney and<br>Liver Disease. Journal of the American Society of Nephrology: JASN, 2010, 21, 1052-1061.                                                      | 6.1 | 288       |
| 104 | NFκB p50-CCAAT/Enhancer-binding Protein β (C/EBPβ)-mediated Transcriptional Repression of MicroRNA<br>let-7i following Microbial Infection. Journal of Biological Chemistry, 2010, 285, 216-225.                                                    | 3.4 | 97        |
| 105 | Cholangiocyte Myosin IIB Is Required for Localized Aggregation of Sodium Glucose Cotransporter 1 to Sites of <i>Cryptosporidium parvum</i> Cellular Invasion and Facilitates Parasite Internalization. Infection and Immunity, 2010, 78, 2927-2936. | 2.2 | 9         |
| 106 | Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through<br>interaction with primary cilia. American Journal of Physiology - Renal Physiology, 2010, 299, G990-G999.                                                | 3.4 | 234       |
| 107 | Opisthorchis viverrini excretory/secretory products induce toll-like receptor 4 upregulation and production of interleukin 6 and 8 in cholangiocyte. Parasitology International, 2010, 59, 616-621.                                                 | 1.3 | 72        |
| 108 | Activation of Trpv4 Reduces the Hyperproliferative Phenotype of Cystic Cholangiocytes From an Animal Model of ARPKD. Gastroenterology, 2010, 139, 304-314.e2.                                                                                       | 1.3 | 85        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Hepato-Renal Pathology in Pkd2/â^' Mice, an Animal Model of Autosomal Dominant Polycystic Kidney<br>Disease. American Journal of Pathology, 2010, 176, 1282-1291.                                                                               | 3.8 | 31        |
| 110 | Cholangiocyte Cilia and Basal Bodies. , 2010, , 45-70.                                                                                                                                                                                          |     | 0         |
| 111 | MicroRNA-513 Regulates B7-H1 Translation and Is Involved in IFN-Î <sup>3</sup> -Induced B7-H1 Expression in<br>Cholangiocytes. Journal of Immunology, 2009, 182, 1325-1333.                                                                     | 0.8 | 190       |
| 112 | Isolation of Primary Cilia for Morphological Analysis. Methods in Cell Biology, 2009, 94, 103-115.                                                                                                                                              | 1.1 | 9         |
| 113 | HIVâ€l Tat Protein Suppresses Cholangiocyte Tollâ€Like Receptor 4 Expression and Defense<br>against <i>Cryptosporidium parvum</i> . Journal of Infectious Diseases, 2009, 199, 1195-1204.                                                       | 4.0 | 36        |
| 114 | MicroRNAs in cholangiociliopathies. Cell Cycle, 2009, 8, 1324-1328.                                                                                                                                                                             | 2.6 | 22        |
| 115 | The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an<br>animal model of autosomal recessive polycystic kidney disease (ARPKD). Hepatology, 2009, 49, 160-174.                                      | 7.3 | 110       |
| 116 | MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology, 2009, 49, 1595-1601.                                                                    | 7.3 | 247       |
| 117 | Characterization of PKD Protein-Positive Exosome-Like Vesicles. Journal of the American Society of Nephrology: JASN, 2009, 20, 278-288.                                                                                                         | 6.1 | 300       |
| 118 | MicroRNAs: Key Modulators of Posttranscriptional Gene Expression. Gastroenterology, 2009, 136, 17-25.                                                                                                                                           | 1.3 | 95        |
| 119 | Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Current Opinion in Gastroenterology, 2009, 25, 265-271.                                                                                                          | 2.3 | 83        |
| 120 | Cholangiocyte primary cilia in liver health and disease. Developmental Dynamics, 2008, 237, 2007-2012.                                                                                                                                          | 1.8 | 142       |
| 121 | The immunobiology of cholangiocytes. Immunology and Cell Biology, 2008, 86, 497-505.                                                                                                                                                            | 2.3 | 74        |
| 122 | Hepatic Cystogenesis Is Associated with Abnormal Expression and Location of Ion Transporters and<br>Water Channels in an Animal Model of Autosomal Recessive Polycystic Kidney Disease. American<br>Journal of Pathology, 2008, 173, 1637-1646. | 3.8 | 72        |
| 123 | Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via<br>P2Y <sub>12</sub> purinergic receptors. American Journal of Physiology - Renal Physiology, 2008, 295,<br>G725-G734.                              | 3.4 | 147       |
| 124 | MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. Journal of Clinical Investigation, 2008, 118, 3714-3724.                                      | 8.2 | 158       |
| 125 | A Cellular Micro-RNA, let-7i, Regulates Toll-like Receptor 4 Expression and Contributes to<br>Cholangiocyte Immune Responses against Cryptosporidium parvum Infection. Journal of Biological<br>Chemistry, 2007, 282, 28929-28938.              | 3.4 | 409       |
| 126 | Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19138-19143.                               | 7.1 | 186       |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Cholangiocyte biology. Current Opinion in Gastroenterology, 2007, 23, 299-305.                                                                                                                    | 2.3 | 48        |
| 128 | Octreotide Inhibits Hepatic Cystogenesis in a Rodent Model of Polycystic Liver Disease by Reducing<br>Cholangiocyte Adenosine 3′,5′-Cyclic Monophosphate. Gastroenterology, 2007, 132, 1104-1116. | 1.3 | 261       |
| 129 | Cyclic AMP Regulates Bicarbonate Secretion in Cholangiocytes Through Release of ATP Into Bile.<br>Gastroenterology, 2007, 133, 1592-1602.                                                         | 1.3 | 126       |
| 130 | Cholangiocyte Cilia Detect Changes in Luminal Fluid Flow and Transmit Them Into Intracellular Ca2+<br>and cAMP Signaling. Gastroenterology, 2006, 131, 911-920.                                   | 1.3 | 259       |
| 131 | Cytoskeletal and motor proteins facilitate trafficking of AQP1â€containing vesicles in cholangiocytes.<br>Biology of the Cell, 2006, 98, 43-52.                                                   | 2.0 | 32        |
| 132 | Cholangiocyte biology. Current Opinion in Gastroenterology, 2006, 22, 279-287.                                                                                                                    | 2.3 | 19        |
| 133 | Cryptosporidium parvum infects human cholangiocytes via sphingolipid-enriched membrane<br>microdomains. Cellular Microbiology, 2006, 8, 1932-1945.                                                | 2.1 | 42        |
| 134 | Development and characterization of a cholangiocyte cell line from the PCK rat, an animal model of<br>Autosomal Recessive Polycystic Kidney Disease. Laboratory Investigation, 2006, 86, 940-950. | 3.7 | 38        |
| 135 | Aquaporins in the hepatobiliary system. Hepatology, 2006, 43, S75-S81.                                                                                                                            | 7.3 | 61        |
| 136 | Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes. Hepatology, 2006, 43, 287-296.                                              | 7.3 | 75        |
| 137 | Polycystic liver disease: New insights into disease pathogenesis. Hepatology, 2006, 43, 906-908.                                                                                                  | 7.3 | 35        |
| 138 | Primary sclerosing cholangitis: Summary of a workshop. Hepatology, 2006, 44, 746-764.                                                                                                             | 7.3 | 235       |
| 139 | Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma.<br>Hepatology, 2006, 44, 1465-1477.                                                              | 7.3 | 110       |
| 140 | Proteolytic Cleavage and Nuclear Translocation of Fibrocystin Is Regulated by Intracellular Ca2+ and<br>Activation of Protein Kinase C. Journal of Biological Chemistry, 2006, 281, 34357-34364.  | 3.4 | 85        |
| 141 | Isolation and characterization of cholangiocyte primary cilia. American Journal of Physiology - Renal<br>Physiology, 2006, 291, G500-G509.                                                        | 3.4 | 95        |
| 142 | Physiology of Cholangiocytes. , 2006, , 1505-1533.                                                                                                                                                |     | 4         |
| 143 | Cholangiocyte biology. Current Opinion in Gastroenterology, 2005, 21, 337-343.                                                                                                                    | 2.3 | 3         |
| 144 | Aquaporin-8 Is Involved in Water Transport in Isolated Superficial Colonocytes from Rat Proximal Colon. Journal of Nutrition, 2005, 135, 2329-2336.                                               | 2.9 | 45        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Multiple TLRs Are Expressed in Human Cholangiocytes and Mediate Host Epithelial Defense Responses<br>to <i>Cryptosporidium parvum</i> via Activation of NF-κB. Journal of Immunology, 2005, 175, 7447-7456.                                             | 0.8 | 199       |
| 146 | Regulated vesicle trafficking of membrane transporters in hepatic epithelia. Journal of Hepatology, 2005, 42, 592-603.                                                                                                                                  | 3.7 | 18        |
| 147 | Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6338-6343. | 7.1 | 84        |
| 148 | Apical Organelle Discharge by Cryptosporidium parvum Is Temperature, Cytoskeleton, and<br>Intracellular Calcium Dependent and Required for Host Cell Invasion. Infection and Immunity, 2004, 72,<br>6806-6816.                                          | 2.2 | 77        |
| 149 | Phosphatidylinositol 3-Kinase and Frabin Mediate Cryptosporidium parvum Cellular Invasion via Activation of Cdc42. Journal of Biological Chemistry, 2004, 279, 31671-31678.                                                                             | 3.4 | 65        |
| 150 | Cdc42 and the Actin-Related Protein/Neural Wiskott-Aldrich Syndrome Protein Network Mediate Cellular Invasion by Cryptosporidium parvum. Infection and Immunity, 2004, 72, 3011-3021.                                                                   | 2.2 | 52        |
| 151 | AQP4 transfected into mouse cholangiocytes promotes water transport in biliary epithelia.<br>Hepatology, 2004, 39, 109-116.                                                                                                                             | 7.3 | 28        |
| 152 | The cholangiopathies: Disorders of biliary epithelia. Gastroenterology, 2004, 127, 1565-1577.                                                                                                                                                           | 1.3 | 326       |
| 153 | Biliary Dysgenesis in the PCK Rat, an Orthologous Model of Autosomal Recessive Polycystic Kidney<br>Disease. American Journal of Pathology, 2004, 165, 1719-1730.                                                                                       | 3.8 | 105       |
| 154 | Rat hepatocyte aquaporin-8 water channels are down-regulated in extrahepatic cholestasis.<br>Hepatology, 2003, 37, 1026-1033.                                                                                                                           | 7.3 | 66        |
| 155 | Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytes. Hepatology, 2003, 37, 1435-1441.                                                                                                   | 7.3 | 76        |
| 156 | Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat1 1The authors thank Dr. Torra for supplying ARPKD tissue Gastroenterology, 2003, 125, 1303-1310.                                                                   | 1.3 | 194       |
| 157 | Cryptosporidium parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src. Gastroenterology, 2003, 125, 216-228.                                                                                          | 1.3 | 75        |
| 158 | Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology, 2003, 124, 737-753.                                                                                             | 1.3 | 129       |
| 159 | Hepatic Artery and Portal Vein Remodeling in Rat Liver. American Journal of Pathology, 2003, 162, 1175-1182.                                                                                                                                            | 3.8 | 52        |
| 160 | Agonist-induced Coordinated Trafficking of Functionally Related Transport Proteins for Water and<br>Ions in Cholangiocytes. Journal of Biological Chemistry, 2003, 278, 20413-20419.                                                                    | 3.4 | 108       |
| 161 | Specific Inhibition of AQP1 Water Channels in Isolated Rat Intrahepatic Bile Duct Units by Small Interfering RNAs. Journal of Biological Chemistry, 2003, 278, 6268-6274.                                                                               | 3.4 | 56        |
| 162 | Water Transporting Properties of Hepatocyte Basolateral and Canalicular Plasma Membrane Domains.<br>Journal of Biological Chemistry, 2003, 278, 43157-43162.                                                                                            | 3.4 | 63        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Cholangiocyte biology. Current Opinion in Gastroenterology, 2003, 19, 264-269.                                                                                                                   | 2.3  | 0         |
| 164 | Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. American Journal of Physiology - Cell Physiology, 2003, 284, C1205-C1214. | 4.6  | 62        |
| 165 | Expression and Localization of Aquaporin Water Channels in Rat Hepatocytes. Journal of Biological Chemistry, 2002, 277, 22710-22717.                                                             | 3.4  | 131       |
| 166 | Cholangiocyte biology. Current Opinion in Gastroenterology, 2002, 18, 360-365.                                                                                                                   | 2.3  | 2         |
| 167 | Water transport by epithelia of the digestive tract. Gastroenterology, 2002, 122, 545-562.                                                                                                       | 1.3  | 130       |
| 168 | Cryptosporidiosis. New England Journal of Medicine, 2002, 346, 1723-1731.                                                                                                                        | 27.0 | 451       |
| 169 | Channel-mediated water movement across enclosed or perfused mouse intrahepatic bile duct units.<br>American Journal of Physiology - Cell Physiology, 2002, 283, C338-C346.                       | 4.6  | 36        |
| 170 | Intrahepatic bile ducts transport water in response to absorbed glucose. American Journal of<br>Physiology - Cell Physiology, 2002, 283, C785-C791.                                              | 4.6  | 51        |
| 171 | The pathobiology of biliary epithelia. Hepatology, 2002, 35, 1256-1268.                                                                                                                          | 7.3  | 135       |
| 172 | Regulation of Ca2+ signaling in rat bile duct epithelia by inositol 1,4,5-trisphosphate receptor isoforms. Hepatology, 2002, 36, 284-296.                                                        | 7.3  | 79        |
| 173 | Experimental models to study cholangiocyte biology. World Journal of Gastroenterology, 2002, 8, 1.                                                                                               | 3.3  | 11        |
| 174 | Nitric oxide–mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes.<br>Gastroenterology, 2001, 120, 190-199.                                                      | 1.3  | 212       |
| 175 | Quantitative Assessment of the Rat Intrahepatic Biliary System by Three-Dimensional Reconstruction.<br>American Journal of Pathology, 2001, 158, 2079-2088.                                      | 3.8  | 59        |
| 176 | Cryptosporidium parvum activates nuclear factor κB in biliary epithelia preventing epithelial cell<br>apoptosis. Gastroenterology, 2001, 120, 1774-1783.                                         | 1.3  | 135       |
| 177 | Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis.<br>American Journal of Physiology - Renal Physiology, 2001, 281, G626-G634.                | 3.4  | 236       |
| 178 | Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. American Journal of<br>Physiology - Renal Physiology, 2001, 281, G1059-G1067.                                 | 3.4  | 85        |
| 179 | Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochemical Journal, 2001, 358, 1-5.                                                                                        | 3.7  | 67        |
| 180 | Water movement across rat bile duct units is transcellular and channel-mediated. Hepatology, 2001, 34, 456-463.                                                                                  | 7.3  | 31        |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | The Water Channel Aquaporin-8 Is Mainly Intracellular in Rat Hepatocytes, and Its Plasma Membrane<br>Insertion Is Stimulated by Cyclic AMP. Journal of Biological Chemistry, 2001, 276, 12147-12152.                        | 3.4  | 177       |
| 182 | Expression of aquaporin-4 water channels in rat cholangiocytes. Hepatology, 2000, 31, 1313-1317.                                                                                                                            | 7.3  | 54        |
| 183 | Current therapies and clinical controversies in the management of primary sclerosing cholangitis.<br>Current Gastroenterology Reports, 2000, 2, 99-103.                                                                     | 2.5  | 7         |
| 184 | The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. American Journal of Gastroenterology, 2000, 95, 204-207.                                                  | 0.4  | 376       |
| 185 | Perfused rat intrahepatic bile ducts secrete and absorb water, solute, and ions. Gastroenterology, 2000, 119, 1672-1680.                                                                                                    | 1.3  | 45        |
| 186 | Mechanisms of attachment and internalization of Cryptosporidium parvum to biliary and intestinal epithelial cells. Gastroenterology, 2000, 118, 368-379.                                                                    | 1.3  | 106       |
| 187 | Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. American<br>Journal of Physiology - Renal Physiology, 1999, 276, G280-G286.                                                      | 3.4  | 75        |
| 188 | Oral nicotine in treatment of primary sclerosing cholangitis: a pilot study. Digestive Diseases and Sciences, 1999, 44, 602-607.                                                                                            | 2.3  | 70        |
| 189 | Recurrence of primary sclerosing cholangitis following liver transplantation. Hepatology, 1999, 29, 1050-1056.                                                                                                              | 7.3  | 344       |
| 190 | The relative role of the child-pugh classification and the mayo natural history model in the assessment of survival in patients with primary sclerosing cholangitis. Hepatology, 1999, 29, 1643-1648.                       | 7.3  | 124       |
| 191 | Long-term results of patients undergoing liver transplantation for primary sclerosing cholangitis.<br>Hepatology, 1999, 30, 1121-1127.                                                                                      | 7.3  | 329       |
| 192 | Biliary Tract Cancers. New England Journal of Medicine, 1999, 341, 1368-1378.                                                                                                                                               | 27.0 | 933       |
| 193 | Anatomy of the human biliary system studied by quantitative computer-aided three-dimensional imaging techniques. Hepatology, 1998, 27, 893-899.                                                                             | 7.3  | 93        |
| 194 | Cryptosporidium parvum is cytopathic for cultured human biliary epithelia via an apoptotic<br>mechanism. Hepatology, 1998, 28, 906-913.                                                                                     | 7.3  | 102       |
| 195 | Purinergic regulation of acid/base transport in human and rat biliary epithelial cell lines. Hepatology, 1998, 28, 914-920.                                                                                                 | 7.3  | 48        |
| 196 | Characterization and growth regulation of a rat intrahepatic bile duct epithelial cell line under<br>hormonally defined, serum-free conditions. In Vitro Cellular and Developmental Biology - Animal,<br>1998, 34, 704-710. | 1.5  | 24        |
| 197 | Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct ligation. American<br>Journal of Physiology - Renal Physiology, 1998, 274, G767-G775.                                                     | 3.4  | 119       |
| 198 | Glutathione depletion is associated with decreased Bcl-2 expression and increased apoptosis in cholangiocytes. American Journal of Physiology - Renal Physiology, 1998, 275, G749-G757.                                     | 3.4  | 60        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Functional polarity of Na <sup>+</sup> /H <sup>+</sup> and Cl <sup>â^'</sup> / HCO 3 â^' exchangers in a rat cholangiocyte cell line. American Journal of Physiology - Renal Physiology, 1998, 275, G1236-G1245. | 3.4 | 30        |
| 200 | Interactions Between Chronic Liver Disease and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 1997, 3, 288-302.                                                                                        | 1.9 | 54        |
| 201 | Secretin Promotes Osmotic Water Transport in Rat Cholangiocytes by Increasing Aquaporin-1 Water<br>Channels in Plasma Membrane. Journal of Biological Chemistry, 1997, 272, 12984-12988.                         | 3.4 | 178       |
| 202 | Regulation of biliary secretion through apical purinergic receptors in cultured rat cholangiocytes.<br>American Journal of Physiology - Renal Physiology, 1997, 273, G1108-G1117.                                | 3.4 | 41        |
| 203 | Aquaporin water channels in liver: Their significance in bile formation. Hepatology, 1997, 26, 1081-1084.                                                                                                        | 7.3 | 46        |
| 204 | Interactions between chronic liver disease and inflammatory bowel disease. Inflammatory Bowel Diseases, 1997, 3, 288-302.                                                                                        | 1.9 | 58        |
| 205 | Characterization of Apical and Basolateral Plasma Membrane Domains Derived from Cultured Rat<br>Cholangiocytes. Analytical Biochemistry, 1997, 254, 192-199.                                                     | 2.4 | 32        |
| 206 | Rat Hepatocytes Transport Water Mainly via a Non-channel-mediated Pathway. Journal of Biological<br>Chemistry, 1996, 271, 6702-6707.                                                                             | 3.4 | 45        |
| 207 | Solute and Water Transport Pathways in Cholangiocytes. Seminars in Liver Disease, 1996, 16, 221-229.                                                                                                             | 3.6 | 32        |
| 208 | Quantitative importance of biliary excretion to the turnover of hepatic lysosomal enzymes.<br>Hepatology, 1995, 22, 262-266.                                                                                     | 7.3 | 9         |
| 209 | Dynamic measurements of the acute and chronic effects of lysosomotropic agents on hepatocyte lysosomal pH using flow cytometry. Hepatology, 1995, 22, 1519-1526.                                                 | 7.3 | 30        |
| 210 | Isolation and characterization of rat cholangiocyte vesicles enriched in apical or basolateral plasma<br>membrane domains. Biochemistry, 1995, 34, 15436-15443.                                                  | 2.5 | 67        |
| 211 | Human cholangiocarcinomas express somatostatin receptors and respond to somatostatin with growth inhibition. Gastroenterology, 1995, 108, 1908-1916.                                                             | 1.3 | 55        |
| 212 | Recent advances in the isolation of liver cells. Hepatology, 1994, 20, 494-514.                                                                                                                                  | 7.3 | 160       |
| 213 | Recent advances in the isolation of liver cells. Hepatology, 1994, 20, 494-514.                                                                                                                                  | 7.3 | 15        |
| 214 | Diagnostic Role of Serum CA 19-9 for Cholangiocarcinoma in Patients With Primary Sclerosing<br>Cholangitis. Mayo Clinic Proceedings, 1993, 68, 874-879.                                                          | 3.0 | 207       |
| 215 | Cholangiocarcinoma Complicating Primary Sclerosing Cholangitis. Annals of Surgery, 1991, 213, 21-25.                                                                                                             | 4.2 | 337       |
| 216 | The metabolic bone disease of primary sclerosing cholangitis. Hepatology, 1991, 14, 257-261.                                                                                                                     | 7.3 | 115       |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | The metabolic bone disease of primary sclerosing cholangitis. Hepatology, 1991, 14, 257-261.                                                                            | 7.3 | 7         |
| 218 | Morphologic Demonstration of Receptor-Mediated Endocytosis of Epidermal Growth Factor by<br>Isolated Bile Duct Epithelial Cells. Gastroenterology, 1990, 98, 1284-1291. | 1.3 | 38        |
| 219 | Physicochemical determinants in hepatic extraction of small peptides. Hepatology, 1990, 12, 76-82.                                                                      | 7.3 | 29        |
| 220 | Lack of metabolic effects of cholecystokinin on hepatocytes. Hepatology, 1990, 12, 301-305.                                                                             | 7.3 | 11        |
| 221 | Primary sclerosing cholangitis: Natural history, prognostic factors and survival analysis.<br>Hepatology, 1989, 10, 430-436.                                            | 7.3 | 622       |
| 222 | The liver and intracellular digestion: How liver cells eat!. Hepatology, 1989, 10, 877-886.                                                                             | 7.3 | 24        |
| 223 | Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver.<br>Gastroenterology, 1989, 97, 1236-1247.                               | 1.3 | 196       |
| 224 | Effect of Proctocolectomy for Chronic Ulcerative Colitis on the Natural History of Primary<br>Sclerosing Cholangitis. Gastroenterology, 1989, 96, 790-794.              | 1.3 | 118       |
| 225 | Pharmacologic perturbation of rat liver lysosomes: Effects on release of lysosomal enzymes and of lipids into bile. Gastroenterology, 1988, 95, 1088-1098.              | 1.3 | 25        |
| 226 | Prospective trial of penicillamine in primary sclerosing cholangitis. Gastroenterology, 1988, 95, 1036-1042.                                                            | 1.3 | 168       |
| 227 | Enhanced autoreactivity of T-lymphocytes in primary sclerosing cholangitis. Hepatology, 1987, 7, 884-888.                                                               | 7.3 | 60        |
| 228 | Hepatic extraction of renin: Quantitation and characterization in the isolated perfused rat liver.<br>Hepatology, 1987, 7, 1254-1261.                                   | 7.3 | 13        |
| 229 | Peristomal varices after proctocolectomy in patients with primary sclerosing cholangitis.<br>Gastroenterology, 1986, 90, 316-322.                                       | 1.3 | 147       |
| 230 | The isolated perfused rat liver: Conceptual and practical considerations. Hepatology, 1986, 6, 511-517.                                                                 | 7.3 | 264       |
| 231 | Intrahepatic cholangiectases and large-duct obliteration in primary sclerosing cholangitis.<br>Hepatology, 1986, 6, 560-568.                                            | 7.3 | 90        |
| 232 | Abnormalities in tests of copper metabolism in primary sclerosing cholangitis. Gastroenterology, 1985, 89, 272-278.                                                     | 1.3 | 80        |
| 233 | Comparison of the Clinicopathologic Features of Primary Sclerosing Chol-angitis and Primary Biliary<br>Cirrhosis. Gastroenterology, 1985, 88, 108-114.                  | 1.3 | 205       |
| 234 | Manifestations of nonsuppurative cholangitis in chronic hepatobiliary diseases: morphologic spectrum, clinical correlations and terminology. Liver, 1984, 4, 105-116.   | 0.1 | 113       |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Effect of Chloroquine on the Form and Function of Hepatocyte Lysosomes Morphologic<br>Modifications and Physiologic Alterations Related to the Biliary Excretion of Lipids and Proteins.<br>Gastroenterology, 1983, 85, 1146-1153. | 1.3  | 37        |
| 236 | Elevated Circulating Immune Complexes in Primary Sclerosing Cholangitis. Hepatology, 1983, 3, 150-154.                                                                                                                             | 7.3  | 131       |
| 237 | Triton WR-1339, A Lysosomotropic Compound, Is Excreted into Bile and Alters the Biliary Excretion of Lysosomal Enzymes and Lipids. Hepatology, 1982, 2, 209S-215S.                                                                 | 7.3  | 36        |
| 238 | Morphologic features of chronic hepatitis associated with primary sclerosing cholangitis and chronic ulcerative colitis. Hepatology, 1981, 1, 632-640.                                                                             | 7.3  | 325       |
| 239 | Clinicopathologic features of the syndrome of primary sclerosing cholangitis. Gastroenterology, 1980, 79, 200-206.                                                                                                                 | 1.3  | 541       |
| 240 | Coordinate Secretion of Acid Hydrolases in Rat Bile. Journal of Clinical Investigation, 1979, 64, 948-954.                                                                                                                         | 8.2  | 104       |
| 241 | Effect of Deoxycholic Acid Ingestion on Bile Acid Metabolism and Biliary Lipid Secretion in Normal Subjects. Gastroenterology, 1977, 72, 132-140.                                                                                  | 1.3  | 129       |
| 242 | Abnormalities of Chemical Tests for Copper Metabolism in Chronic Active Liver Disease:<br>Differentiation from Wilson's Disease. Gastroenterology, 1976, 70, 653-655.                                                              | 1.3  | 67        |
| 243 | Validity and Sensitivity of an Intravenous Bile Acid Tolerance Test in Patients with Liver Disease. New<br>England Journal of Medicine, 1975, 292, 1209-1214.                                                                      | 27.0 | 88        |