
Xinping Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8744226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mild hydrodeoxygenation of lignin-derived bio-oils to hydrocarbons over bifunctional ZrP2O7-Ni12P5 catalysts. Fuel, 2022, 313, 123044.	6.4	15
2	Production of water-soluble sugar from cellulose and corn stover via molten salt hydrate impregnation and separation. Cellulose, 2022, 29, 879-891.	4.9	7
3	Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions. Green Chemistry, 2022, 24, 846-857.	9.0	15
4	Long-Acting Ultraviolet-Blocking Mechanism of Lignin: Generation and Transformation of Semiquinone Radicals. ACS Sustainable Chemistry and Engineering, 2022, 10, 5421-5429.	6.7	22
5	Preparation of Light-Colored Lignosulfonate Sunscreen Microcapsules with Strengthened UV-Blocking and Adhesion Performance. ACS Sustainable Chemistry and Engineering, 2022, 10, 9381-9388.	6.7	22
6	Hydrogenolysis of lignin to produce aromatic monomers over Fe Pd bimetallic catalyst supported on HZSM-5. Fuel Processing Technology, 2021, 213, 106713.	7.2	24
7	Improvement on the catalytic performances of butyl levulinate hydrogenation to \hat{I}^3 -valerolactone over self-regenerated CuNiCoB/Palygorskite catalyst. Molecular Catalysis, 2021, 504, 111483.	2.0	4
8	Adsorption-Enhanced Glucan Oligomer Production from Cellulose Hydrolysis over Hyper-Cross-Linked Polymer in Molten Salt Hydrate. ACS Applied Materials & Interfaces, 2021, 13, 52082-52091.	8.0	12
9	Extraction of Noncondensed Lignin from Poplar Sawdusts with <i>p</i> -Toluenesulfonic Acid and Ethanol. Journal of Agricultural and Food Chemistry, 2021, 69, 10838-10847.	5.2	20
10	Separation of short-chain glucan oligomers from molten salt hydrate and hydrolysis to glucose. Green Chemistry, 2021, 23, 4114-4124.	9.0	15
11	Liquid–Liquid Equilibrium Data for Cyclohexane–Ethanol–Solvent Ternary Systems and Their Correlation with the Nonrandom Two-Liquid Model. Journal of Chemical & Engineering Data, 2021, 66, 4384-4390.	1.9	2
12	Metalloporphyrin as a Biomimetic Catalyst for the Catalytic Oxidative Degradation of Lignin to Produce Aromatic Monomers. Waste and Biomass Valorization, 2020, 11, 4481-4489.	3.4	8
13	Impact of nitrogen species and content on the catalytic activity to C–O bond cleavage of lignin over N-doped carbon supported Ru-based catalyst. Fuel, 2020, 278, 118324.	6.4	26
14	Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis. International Journal of Biological Macromolecules, 2020, 154, 981-988.	7.5	36
15	Lignin Removal from Tobacco Stem with Laccase Improved by Synergistic Action of Weak Alkali and Tween 80. Waste and Biomass Valorization, 2019, 10, 3343-3350.	3.4	7
16	In Situ Preparation of Ru@N-Doped Carbon Catalyst for the Hydrogenolysis of Lignin To Produce Aromatic Monomers. ACS Catalysis, 2019, 9, 5828-5836.	11.2	110
17	Lignosulfonate: A Convenient Fluorescence Resonance Energy Transfer Platform for the Construction of a Ratiometric Fluorescence pH-Sensing Probe. Journal of Agricultural and Food Chemistry, 2019, 67, 1044-1051.	5.2	15
18	Effect of structural characteristics on the depolymerization of lignin into phenolic monomers. Fuel, 2018, 223, 366-372.	6.4	55

XINPING OUYANG

#	Article	IF	CITATIONS
19	Oxidative depolymerization of lignin improved by enzymolysis pretreatment with laccase. Journal of Energy Chemistry, 2018, 27, 801-805.	12.9	14
20	Catalytic upgrading of biopolyols derived from liquefaction of wheat straw over a high-performance and stable supported amorphous alloy catalyst. Energy Conversion and Management, 2018, 156, 130-139.	9.2	18
21	Photoluminescent Composites of Lanthanide-Based Nanocrystal-Functionalized Cellulose Fibers for Anticounterfeiting Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 13960-13967.	6.7	45
22	Improving antioxidant activity of lignin by hydrogenolysis. Industrial Crops and Products, 2018, 125, 228-235.	5.2	36
23	Lignin — a promising biomass resource. Tappi Journal, 2018, 17, 125-141.	0.5	15
24	Effect of Benzyl Functionality on Microwave-Assisted Cleavage of C _α –C _β Bonds in Lignin Model Compounds. Journal of Physical Chemistry C, 2017, 121, 1537-1545.	3.1	10
25	Microwave-assisted selective cleavage of C C bond for lignin depolymerization. Fuel Processing Technology, 2017, 161, 155-161.	7.2	45
26	Furfural hydrogenation over amorphous alloy catalysts prepared by different reducing agents. BioResources, 2017, 12, 8755-8774.	1.0	9
27	Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols. Bioresource Technology, 2016, 218, 718-722.	9.6	66
28	Nonconventional photoluminescence from sulfonated acetone–formaldehyde condensate with aggregation-enhanced emission. RSC Advances, 2016, 6, 47632-47636.	3.6	19
29	Effect of Cholesterol on Cellular Uptake of Cancer Drugs Pirarubicin and Ellipticine. Journal of Physical Chemistry B, 2016, 120, 3148-3156.	2.6	38
30	Effect of functional groups on hydrogenolysis of lignin model compounds. Fuel Processing Technology, 2016, 154, 132-138.	7.2	39
31	Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds. Fuel Processing Technology, 2016, 144, 181-185.	7.2	97
32	Selective cleavage of aryl ether bonds in dimeric lignin model compounds. RSC Advances, 2016, 6, 17880-17887.	3.6	24
33	Microwave-assisted oxidative digestion of lignin with hydrogen peroxide for TOC and color removal. Water Science and Technology, 2015, 71, 390-396.	2.5	9
34	Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds. Journal of Energy Chemistry, 2015, 24, 72-76.	12.9	70
35	Ethanol-Enhanced Liquefaction of Lignin with Formic Acid as an <i>in Situ</i> Hydrogen Donor. Energy & Fuels, 2015, 29, 5835-5840.	5.1	41
36	Adsorption Characteristics of Lignosulfonates in Salt-Free and Salt-Added Aqueous Solutions. Biomacromolecules, 2011, 12, 3313-3320.	5.4	64

XINPING OUYANG

#	Article	IF	CITATIONS
37	Chemical modification of lignin assisted by microwave irradiation. Holzforschung, 2011, 65, .	1.9	13
38	pH EFFECT ON ELECTROSTATIC LAYER-BY-LAYER SELF-ASSEMBLY OF SODIUM LIGNOSULFONATE. Acta Polymerica Sinica, 2010, 010, 699-704.	0.0	4
39	Physicochemical Behavior of Sulphonated Acetone-Formaldehyde Resin and Naphthalene Sulfonate-Formaldehyde Condensate in Coal-Water Interface. Journal of Dispersion Science and Technology, 2009, 30, 353-360.	2.4	16
40	Sulfonation of Alkali Lignin and Its Potential Use in Dispersant for Cement. Journal of Dispersion Science and Technology, 2009, 30, 1-6.	2.4	171
41	The feasibility of synthetic surfactant as an air entraining agent for the cement matrix. Construction and Building Materials, 2008, 22, 1774-1779.	7.2	65
42	Corrosion and Scale Inhibition Properties of Sodium Lignosulfonate and Its Potential Application in Recirculating Cooling Water System. Industrial & Engineering Chemistry Research, 2006, 45, 5716-5721.	3.7	98
43	Physicochemical characterization of calcium lignosulfonate—A potentially useful water reducer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 489-497.	4.7	122