Francisco Javier Gil Mur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8743930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mimicking bone extracellular matrix: Integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. Colloids and Surfaces B: Biointerfaces, 2015, 128, 191-200.	5.0	82
2	Relevant aspects in the surface properties in titanium dental implants for the cellular viability. Materials Science and Engineering C, 2016, 64, 1-10.	7.3	77
3	Antimicrobial Peptides: Powerful Biorecognition Elements to Detect Bacteria in Biosensing Technologies. Molecules, 2018, 23, 1683.	3.8	61
4	Implant–abutment connections: influence of the design on the microgap and their fatigue and fracture behavior of dental implants. Journal of Materials Science: Materials in Medicine, 2014, 25, 1825-1830.	3.6	52
5	Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. Acta Biomaterialia, 2016, 43, 269-281.	8.3	51
6	Bioactive Star Gels. Chemistry of Materials, 2006, 18, 5696-5703.	6.7	48
7	All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids and Surfaces B: Biointerfaces, 2018, 169, 30-40.	5.0	48
8	Low modulus Ti–Nb–Hf alloy for biomedical applications. Materials Science and Engineering C, 2014, 42, 691-695.	7.3	41
9	Tuning Mesenchymal Stem Cell Response onto Titanium–Niobium–Hafnium Alloy by Recombinant Fibronectin Fragments. ACS Applied Materials & Interfaces, 2016, 8, 2517-2525.	8.0	30
10	Design and Characterization of New Ti-Nb-Hf Alloys. Journal of Materials Engineering and Performance, 2009, 18, 490-495.	2.5	23
11	Variation of the superelastic properties and nickel release from original and reused NiTi orthodontic archwires. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 6, 113-119.	3.1	21
12	Direct extrusion of individually encapsulated endothelial and smooth muscle cells mimicking blood vessel structures and vascular native cell alignment. Biofabrication, 2021, 13, 015003.	7.1	19
13	Optimization of the Ti-16.2Hf-24.8Nb-1Zr Alloy by Cold Working. Journal of Materials Engineering and Performance, 2009, 18, 506-510.	2.5	18
14	Effect of Oxygen Content on Grain Growth Kinetics of Titanium. Journal of Materials Synthesis and Processing, 2002, 10, 263-266.	0.3	16
15	Control of stem cell response and bone growth on biomaterials by fully non-peptidic integrin selective ligands. Biomaterials Science, 2019, 7, 1281-1285.	5.4	13
16	Fracture and Fatigue Behavior of Shot-Blasted Titanium Dental Implants. Implant Dentistry, 2002, 11, 28-32.	1.3	12
17	Corrosion and corrosion-fatigue behavior of cp-Ti and Ti–6Al–4V laser-marked biomaterials. Journal of Materials Science: Materials in Medicine, 2012, 23, 885-890.	3.6	12
18	Characterization of Two Ti-Nb-Hf-Zr Alloys Under Different Cold Rolling Conditions. Journal of Materials Engineering and Performance, 2011, 20, 653-657.	2.5	10

#	Article	IF	CITATIONS
19	On-Growth and In-Growth Osseointegration Enhancement in PM Porous Ti-Scaffolds by Two Different Bioactivation Strategies: Alkali Thermochemical Treatment and RGD Peptide Coating. International Journal of Molecular Sciences, 2022, 23, 1750.	4.1	10
20	Mechanical and physicochemical characterization along with biological interactions of a new Ti25Nb21Hf alloy for bone tissue engineering. Journal of Biomaterials Applications, 2015, 30, 171-181.	2.4	8
21	Influence of Soft Drinks with Low pH on Different Ni-Ti Orthodontic Archwire Surface Patterns. Journal of Materials Engineering and Performance, 2013, 22, 759-766.	2.5	6
22	Effect of saline solution environment on the cyclic deformation of Ti-6Al-4V alloy. Journal of Materials Science: Materials in Medicine, 1996, 7, 131-134.	3.6	4
23	Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrileâ€butadieneâ€styrene particles: I. Fracture toughness. Journal of Biomedical Materials Research Part B, 1999, 48, 121-127.	3.1	1