Mohammad Miransari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8743864/publications.pdf

Version: 2024-02-01

65 papers 3,376 citations

257450 24 h-index 265206 42 g-index

66 all docs

66 docs citations

66 times ranked 3660 citing authors

#	Article	IF	CITATIONS
1	Plant hormones and seed germination. Environmental and Experimental Botany, 2014, 99, 110-121.	4.2	521
2	Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 2011, 29, 645-653.	11.7	320
3	Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology, 2010, 12, 563-9.	3.8	262
4	Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 2011, 27, 197-205.	3.6	226
5	Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 2011, 89, 917-930.	3.6	215
6	Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. Journal of Plant Physiology, 2009, 166, 667-674.	3.5	182
7	Soil microbes and the availability of soil nutrients. Acta Physiologiae Plantarum, 2013, 35, 3075-3084.	2.1	160
8	Soil microbes and plant fertilization. Applied Microbiology and Biotechnology, 2011, 92, 875-885.	3.6	143
9	Arbuscular mycorrhizal fungi and nitrogen uptake. Archives of Microbiology, 2011, 193, 77-81.	2.2	136
10	Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiologiae Plantarum, 2011, 33, 145-152.	2.1	84
11	Sustainable wheat (<i>Triticum aestivum</i> L.) production in saline fields: a review. Critical Reviews in Biotechnology, 2019, 39, 999-1014.	9.0	74
12	Plant hormones as signals in arbuscular mycorrhizal symbiosis. Critical Reviews in Biotechnology, 2014, 34, 123-133.	9.0	69
13	The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea) Tj ETQq1 1	0.784314	1 rgBT /Over <mark>lo</mark>
14	Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. Comptes Rendus - Biologies, 2011, 334, 564-571.	0.2	66
15	Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. Journal of Plant Interactions, 2008, 3, 287-295.	2.1	64
16	The importance of soybean production worldwide. , 2016, , 1-26.		61
17	Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiologiae Plantarum, 2010, 32, 281-288.	2.1	59
18	Plant Growth Promoting Rhizobacteria. Journal of Plant Nutrition, 2014, 37, 2227-2235.	1.9	54

#	Article	IF	Citations
19	Arbuscular Mycorrhizal Fungi and Heavy Metal Tolerance in Plants. , 2017, , 147-161.		45
20	Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. Comptes Rendus - Biologies, 2010, 333, 248-254.	0.2	43
21	Improving Soybean (Glycine max L.) N2 Fixation under Stress. Journal of Plant Growth Regulation, 2013, 32, 909-921.	5.1	43
22	The Role of Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress. , 2014, , 23-38.		43
23	Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiology and Molecular Biology of Plants, 2010, 16, 343-351.	3.1	42
24	Using Geostatistics and Geographic Information System Techniques to Characterize Spatial Variability of Soil Properties, Including Micronutrients. Communications in Soil Science and Plant Analysis, 2013, 44, 1273-1281.	1.4	35
25	DEVELOPMENT OF A SOIL N TEST FOR FERTILIZER REQUIREMENTS FOR WHEAT. Journal of Plant Nutrition, 2011, 34, 762-777.	1.9	32
26	The phytochemical variability of fatty acids in basil seeds (Ocimum basilicum L.) affected by genotype and geographical differences. Food Chemistry, 2019, 276, 700-706.	8.2	30
27	Impact of Mycorrhizae Formation on the Phosphorus and Heavy-Metal Uptake of Alfalfa. Communications in Soil Science and Plant Analysis, 2013, 44, 1340-1352.	1.4	27
28	Uptake and translocation of cadmium and nutrients by <i>Aeluropus littoralis</i> Archives of Agronomy and Soil Science, 2012, 58, 1413-1425.	2.6	23
29	The Combined Effects of Fungicides and Arbuscular Mycorrhiza on Corn (Zea mays L.) Growth and Yield under Field Conditions. Journal of Biological Sciences, 2009, 9, 372-376.	0.3	22
30	Development of a Soil N Test for Fertilizer Requirements for Corn Production in Quebec. Communications in Soil Science and Plant Analysis, 2010, 42, 50-65.	1.4	21
31	In vitro Growth of Wheat (Triticum aestivum L.) Seedlings, Inoculated with Azospirillum sp., Under Drought Stress. International Journal of Botany, 2009, 5, 244-249.	0.2	21
32	The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress. Applied Microbiology and Biotechnology, 2021, 105, 7201-7213.	3.6	17
33	CORN (ZEA MAYSL.) GROWTH AS AFFECTED BY SOIL COMPACTION AND ARBUSCULAR MYCORRHIZAL FUNGI. Journal of Plant Nutrition, 2013, 36, 1853-1867.	1.9	13
34	Effects of soil tillage, canola (<i>Brassica napus</i> L) cultivars and planting date on canola yield, and oil and some biological and physical properties of soil. Archives of Agronomy and Soil Science, 2008, 54, 175-188.	2.6	11
35	Role of Phytohormone Signaling During Stress. , 2012, , 381-393.		11
36	Development of Soil N Testing for Wheat Production using Soil Residual Mineral N. Journal of Plant Nutrition, 2015, 38, 1995-2005.	1.9	11

#	Article	IF	Citations
37	Soybean production and salinity stress. , 2016, , 157-176.		11
38	POTASSIUM FERTILIZATION AND FRUIT PRODUCTION OF PAGE CITRUS ON A PUNSIRUS ROOTSTOCK: QUANTITATIVE AND QUALITATIVE TRAITS. Journal of Plant Nutrition, 2010, 33, 1564-1578.	1.9	10
39	Soybean production and heavy metal stress. , 2016, , 197-216.		8
40	Siderophore Efficacy of Fluorescent Pseudomonades Affecting Labeled Iron (59Fe) Uptake by Wheat (Triticum aestivum L.) Genotypes Differing in Fe Efficiency., 2014,, 121-132.		8
41	The Antioxidant, Anticarcinogenic and Antimicrobial Properties of Verbascum thapsus L Medicinal Chemistry, 2020, 16, 991-995.	1.5	8
42	Genomic Research Favoring Higher Soybean Production. Current Genomics, 2020, 21, 481-490.	1.6	7
43	Uptake of Heavy Metals by Mycorrhizal Barley (<i>Hordeum vulgare</i> L.). Journal of Plant Nutrition, 2015, 38, 904-919.	1.9	6
44	Arbuscular Mycorrhiza and Soil Microbes. , 2010, , .		6
45	Enhancing soybean response to biotic and abiotic stresses. , 2016, , 53-77.		5
46	Stress and Mycorrhizal Plant. Fungal Biology, 2016, , 63-79.	0.6	5
47	Soybean production and N fertilization. , 2016, , 241-260.		5
48	The physicochemical approaches of altering growth and biochemical properties of medicinal plants in saline soils. Applied Microbiology and Biotechnology, 2022, 106, 1895-1904.	3.6	5
49	Mycorrhizal Fungi to Alleviate Compaction Stress on Plant Growth. , 2014, , 165-174.		4
50	Allelopathic Effects of Rice Cultivars on the Growth Parameters of Different Rice Cultivars. International Journal of Biological Chemistry, 2009, 3, 56-70.	0.3	4
51	Corn (Zea maysL.) Grain and Stover Yield as Affected by Soil Residual Mineral Nitrogen. Communications in Soil Science and Plant Analysis, 2012, 43, 799-810.	1.4	3
52	³² P Isotope to Determine the Efficiency of Mycorrhizal Wheat Symbiosis Subjected to Saline Water. Communications in Soil Science and Plant Analysis, 2013, 44, 3317-3326.	1.4	3
53	Plant Signaling under Environmental Stress. , 2014, , 541-555.		3
54	Handling Soybean (Glycine max L.) Under Stress. , 2013, , 421-439.		3

#	Article	IF	CITATIONS
55	Mycorrhizal Fungi to Alleviate Salinity Stress on Plant Growth. , 2014, , 77-86.		3
56	The Interactions of Soil Microbes, Arbuscular Mycorrhizal Fungi and N-Fixing Bacteria, Rhizobium, Under Different Conditions Including Stress. , 2014, , 1-21.		2
57	Soybean N fixation and production of soybean inocula. , 2016, , 107-129.		2
58	Safflower (Carthamus tinctorius L.) Oil Content and Yield Components as Affected by Co-inoculation with Azotobacter chroococcum and Glomus intraradices at Various N and P Levels in a Dry Climate., 2014, , 153-164.		2
59	Strategies, challenges, and future perspectives for soybean production under stress., 2016,, 285-309.		1
60	Plant Physiological Mechanisms of Salt Tolerance Induced by Mycorrhizal Fungi and Piriformospora indica., 2014,, 133-152.		1
61	Microbial Products and Soil Stresses. , 2012, , 65-75.		1
62	Potassium Behavior in Some Iranian Soils of Khuzestan Province Planted with Sugarcane. Communications in Soil Science and Plant Analysis, 2011, 42, 2024-2037.	1.4	0
63	EFFECT OF OLIVE OIL ON THE SURVIVAL RATE OF <i>BRADYRHIZOBIUM JAPONICUM</i> IN SOME LIQUID CARRIERS. Journal of Plant Nutrition, 2014, 37, 869-874.	1.9	O
64	Microbial Inoculums., 2014,, 175-184.		0
65	Phytoremediation Using Microbial Communities: I. , 2015, , 177-182.		O