Mohammad Rahman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8743449/mohammad-rahman-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31	1,673 citations	17	36
papers		h-index	g-index
36	2,035 ext. citations	13.7	5.82
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
31	On the Mechanistic Understanding of Photovoltage Loss in Iron Pyrite Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e1905653	24	12
30	Surface polarity, water adhesion and wettability behaviors of iron pyrite. <i>Materials Today: Proceedings</i> , 2020 , 33, 2465-2469	1.4	1
29	Metal-free photocatalysts for hydrogen evolution. <i>Chemical Society Reviews</i> , 2020 , 49, 1887-1931	58.5	190
28	Biochar for electrochemical applications. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2020 , 23, 25-30	7.9	16
27	Rational design and resolution of the mystery of the structure of Cyclo[18]carbon. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8234-8237	13	9
26	Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. <i>Angewandte Chemie</i> , 2020 , 132, 16418	3.6	
25	Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16278-16293	16.4	30
24	Evaluation of Two Potassium-Based Activation Agents for the Production of Oxygen- and Nitrogen-Doped Porous Carbons. <i>Energy & Dog Name (Note of Section 2020)</i> , 34, 6101-6112	4.1	6
23	X-ray diffraction and Raman spectroscopy for lead halide perovskites 2020 , 23-47		1
22	Carbon Nitride Transforms into a High Lithium Storage Capacity Nitrogen-Rich Carbon. <i>ACS Nano</i> , 2019 , 13, 9279-9291	16.7	32
21	How to Make a Most Stable Perovskite Solar Cell. <i>Matter</i> , 2019 , 1, 562-564	12.7	10
20	What Is Limiting Pyrite Solar Cell Performance?. <i>Joule</i> , 2019 , 3, 2290-2293	27.8	8
19	Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production. <i>Accounts of Chemical Research</i> , 2019 , 52, 248-257	24.3	65
18	Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1305-1322	13	125
17	Topological carbon nitride: localized photon absorption and delocalized charge carrier separation at intertwined photocatalyst interfaces. <i>Materials Horizons</i> , 2018 , 5, 553-559	14.4	25
16	Reduced recombination and low-resistive transport of electrons for photo-redox reactions in metal-free hybrid photocatalyst. <i>Applied Physics Letters</i> , 2018 , 112, 253902	3.4	17
15	Tuning the Intrinsic Properties of Carbon Nitride for High Quantum Yield Photocatalytic Hydrogen Production. <i>Advanced Science</i> , 2018 , 5, 1800820	13.6	72

LIST OF PUBLICATIONS

14	Enabling Pt-free photocatalytic hydrogen evolution on polymeric melon: Role of amorphization for overcoming the limiting factors. <i>Physical Review Materials</i> , 2018 , 2,	3.2	6
13	p-Type BP nanosheet photocatalyst with AQE of 3.9% in the absence of a noble metal cocatalyst: investigation and elucidation of photophysical properties. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18	403-18	408 408
12	Advent of 2D Rhenium Disulfide (ReS2): Fundamentals to Applications. <i>Advanced Functional Materials</i> , 2017 , 27, 1606129	15.6	224
11	Counteracting Blueshift Optical Absorption and Maximizing Photon Harvest in Carbon Nitride Nanosheet Photocatalyst. <i>Small</i> , 2017 , 13, 1700376	11	31
10	A Benchmark Quantum Yield for Water Photoreduction on Amorphous Carbon Nitride. <i>Advanced Functional Materials</i> , 2017 , 27, 1702384	15.6	94
9	Graphene oxide coupled carbon nitride homo-heterojunction photocatalyst for enhanced hydrogen production. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 562-571	7.8	27
8	2D phosphorene as a water splitting photocatalyst: fundamentals to applications. <i>Energy and Environmental Science</i> , 2016 , 9, 709-728	35.4	420
7	Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2445-2452	13	105
6	Advances in surface passivation and emitter optimization techniques of c-Si solar cells. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 30, 734-742	16.2	41
5	Emissions through solar PV systems - a review. <i>International Journal of Renewable Energy Technology</i> , 2014 , 5, 323	0.1	
4	Correlation of Fe-Rich Defect Centre and Minority Carrier Lifetime in p-Type Multicrystalline Silicon. <i>Applied Mechanics and Materials</i> , 2013 , 440, 82-87	0.3	2
3	Multitude of progress and unmediated problems of solar PV in Bangladesh. <i>Renewable and Sustainable Energy Reviews</i> , 2012 , 16, 466-473	16.2	17
2	Advances in surface passivation of c-Si solar cells. <i>Materials for Renewable and Sustainable Energy</i> , 2012 , 1, 1	4.7	55
1	Hole utilization in solar hydrogen production. <i>Nature Reviews Chemistry</i> ,	34.6	1